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MEMORANDUM 1-16-59A

A NUMERICAL METHOD FOR CALCULATING THE WAVE DRAG OF
A CONFIGURATION FROM THE SECOND DERIVATIVE OF
THE AREA DISTRIBUTION OF A SERIES OF
EQUIVALENT BODIES OF REVOLUTION*

By Lionel L. Levy, Jr., and Kenneth K. Yoshikawa

SUMMARY

A method based on linearized and slender-body theories, which is
easily adapted to electronic-machine computing equipment, is developed
for calculating the zero-1lift wave drag of single- and multiple-component
configurations from a knowledge of the second derivative of the area dis-
tribution of a series of equivalent bodies of revolution. The accuracy
and computational time required of the method to calculate zero-lift wave
drag is evaluated relative to another numerical method which employs the
Tchebichef form of harmonic analysis of the area distribution of a series
of equivalent bodies of revolution.

The results of the evaluation indicate that the total zero-lift wave
drag of a multiple-component configuration can generally be calculated
most accurately as the sum of the zero-lift wave drag of each component
alone plus the zero-1ift interference wave drag between all pairs of
components. The accuracy and computational time required of both methods
to calculate total zero-1ift wave drag at supersonic Mach numbers is
comparable for airplane-type configurations. For systems of bedies of
revolution both methods yleld similar results with comparable accuracy;
however, the present method only requires up to 60 percent of the comput-
ing time required of the harmonic-analysis method for two bodies of
revolution and less time for a larger number of bodies.

INTRODUCTION

As shown in reference 1, the linearized theory value of the wave drag
of any arbitrary configuration in a steady supersonic flow can be calcu-
lated from a knowledge of the second derivative of the area distribution
of a series of equivalent bodies of revolution obtained from areas and




forces in oblique planes. For slender nonlifting configurations the
wave=-drag contribution of the force term 1s zero or is sufficiently small
that it can be neglected. The zero-1ift wave drag of such configurations
is given to a good approximation by the supersonic area rule developed in
reference 2. The infinite series form of the supersonic area rule in ref-
erence 2 utilizes a knowledge of the first derivative of the area distri-
bution of the series of equivalent bodies of revolution cbtained from only
the areas in oblique planes., In reference 3 the supersonic area rule was
expressed in a form which permits a numerical solution of the infinite
series from a kncwledge of the area distribution cof the series of
equivalent bodies of revolution.

In this report a method applicable to slender nonlifting configura-
tions is developed which utilizes a knowledge of the second derivative of
the area distribution of the equivalent bodies of reveolution. The method
is developed from the integral form of the wave-drag equation given in
reference 1 for nonlifting configurations. By a simple approximatiocn of
the second derivative of the area distribution of the equivalent bodies
of revolution, the zero-lift wave drag is expres.ed in a finite series
which can be evaluated numerically. The finite series form of the present
method is particularly attractive in its application to the calculation
of zero-lift interference wave drag between any pair of compcnents of a
configuration.

The usefulness of the present method depends, of course, upon the
availability of methods for finding the second derivative of the area
distribution of equivalent bodies of revolution. Reference L4 contains
information from which it is possible to calculate the second derivative
of the area distribution of bodies of revolution. A method for finding
the second derivative of the area distribution (as well as the first
derivative and the area distribution) of wing and tail-surface components
of the equivalent bodies of revolution is presented in an appendix.

The present method of zero-1ift wave-drag calculaticn will be
evaluated relative to the method of reference 3 with regard to accuracy
and computational time required. Numerical values of zeroc-1ift wave-drag
solutions for several simple analytical shapes computed by the present
method will be compared with numerical solutions obtained by the methed
of reference 3 and with analytical solutions., Equaticns of the arca dis-
tribution, the first derivative of the area distriouticrn. nnd the second
derivative cf the area distribution c¢f twe families .0 wiaos o 7~ l.
surfaces will also be presented in an appendix.
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SYMBOLS

distance between the ith and jth values of coordinates in
the free-stream direction (see eg. (L1))

coefficients of a Fourier sine series expansion of s'(x,8,6)
span of a wing or tail surface

span of an extended wing or tail surface (see sketch (c))
wing or tail-surface chord at the vertical plane of symmetry

spanwise variation of the dimensionless half-chord of a wing
or tail surface

lateral distance between the longitudinal axes of a pair of
bodies of revolution

wave drag or zero-lift wave drag of a configuration

wave drag or zero-lift wave drag of an eguivalent body of
revolution of a configuration

total number of points specified on a given curve

integral function used tco evaluate the zero-1ift interference
wave drag between a pair of bodies of revolution (see
egs. {(L40O) and (L43))

tangent of the sweep angle of the 50-percent chord line of
any "sheared" panel of an extended wing or tail surface in
dimensionless ccordinates

length of an equivalent bedy of revolution in the positive
x direction, 1(8,8)+1,(F,8) = total equivalent-body length
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5(x,8,6)

AS”(X]'_)
Sm" (x)
tO

t(x,y)

X,Y,2

@(E,H,K)

E,m,¢
()

T(ﬁ,n,K)

reference area upon which drag coefficient or dimensionless
area 1is based

frontal projection of the area distribution intercepted on a
given configuration by a set of parallel obligue planes
tangent to the Mach cones

increment between values of the second derivative of the area
distribution of a configuration at points xj_;, and x4

mean value of the second derivative of the area distribution
of a configuration (see eq. (45))

maximum thickness of wing or tail surface at the vertical
plane of symmetry

thickness distribution of a wing or tail surface

Cartesian coordinates in the free-stream, spanwise, and
thickness directions, respectively

transformation defined by equation (Cl7) which defines any
point in the dimensionless extended plan form of a "sheared"
wing or tail surface as the local dimensionless chord
station measured from the 50-percent chord

ME-1

longitudinal distance between the lateral axes of a pair of
bodies of revolution

taper ratio of a wing or tail surface; ratio of the tip chord
to that at the vertical plane of symmetry

dimensionless Cartesian coordinates in the free-stream,
spanwise, and thickness directions, respectively

dimensionless thickness distribution of the local airfoil
section

dimensionless thickness distribution of a "sheared" wing or
tail surface

angle defining the orientation of the parallel oblique planes
tangent to the Mach cones (see sketch (a))

spanwise variation of the dimensionless thickness along lines
of constant percent chord

tan™'p cos 6



Subscripts
B body
E, H body E or body H
H(E) quantities measured in the coordinate system of body H but
related by a transformation to the coordinate system of
body E
i, J ith and jth points, respectively, of the total number of
points specified on a curve
1 lower limit of integration
n nth term of a Fourier sine series expansion of S'(x,8,0)
R reference
t tip of a wing or tail surface
T total
u upper limit of integration
W wing
Superscripts

! differentiation with respect to a coordinate in the free-
stream direction

~ dimensionless value of any symbol not specifically listed as
such (also see appendix A)

METHOD

Review of Basic Theory

The linearized-theory value cf the wave drag of any arbitrary
configuraticn in o« zsteady cupersonic of i is stated in refersnce 1
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271
D(p) = if D(8,6)d0 (1)
O

1(B,0) N1(B,6) 8
D(p,0) - - & [57001,8,0) - £ 100,00 | [ 27 Cx0,0) -
'11(519) -11(5,9) 4

L'(xg,a,e)J In|x, -x5]dx;dx, (2)
y

The quantity S(x,3,6) is the frontal
projection of the streamwise area
Fmﬁ”i?ﬁﬁ? distribution intercepted on the given
NN configuration by parallel obligque
SN planes tangent to the Mach cones.
Similarly, L(x,B,8) is the frontal
projection of the 1lift distribution
L over the given configuration measured
in the same oblique planes. The
primes denote differentiation with
respect to x. The coordinate system,
angles, Mach planes, and the directicn
of the net force are defined in
sketch (a).

x-Xo:fy cos §

Sketch (a)

In this report only slender nonlifting configurations will be
considered. For these configurations L(x,8,8) can be neglected and the
zero-1lift wave drag of the separate equivalent bodies of revolution for
such configurations is given by

1(B,0) n1(B,0)
S"(x,,B,0)8"(x%5,B,6)1In|x; -xp|dx;dX,
'zl(B)9> 'Zl(Bye) ( )
3

The analysis in reference 1 imposes no restriction on the slope of the
area distribution at the ends of the equivalent bodies of revolution or

of the given configuration., It should be noted that this freedom from
end-condition restrictions requires rigorous adherence to the concept of
the oblique planes when determining the area distribution cf the equivalent
bodies. However, for nonlifting slender pointed bodies of revolution, the
normal cross-sectional area distribution can be used if the end conditicns
of the bodies are such that

D(B,6) = - ==



S'('ll;B)e) = S'(Z;B:G) =0 (h)

For isolated nonlifting slender pointed bodies of revolution for which
the slope of the area distribution at the base is not zero, the normal
cross-sectional area distribution can be used only if the zero-lift wave
drag is calculated by slender-body theory. The zero-lift wave-drag equa-
tion given by slender-body theory for these isclated bodies of revoluticn
is given in reference 5 and can be written

1 A
D= - %f f 8" (x1)8" (x2)in|x1-Xp|dx,dx2 +
-l =l

1
[s'(1)12 2 s5t() [t
qg{ 5= n R +— k/h S (xg)lnll-x2|dx%} (5)

-13

where R(1) is the radius at the base of the body. The lower limits of
integration, -1;, imply merely that the origin of the coordinate system
need not be chosen at the half-body length. For bodies of revolution with
zero slope of the area distribution at the base, s*(1) = 0, the second
term of equation (5) vanishes and the resulting equation is identical to
the equation (3) for eguivalent bodies of revolution, once values of
and 6 are specified,.

The area distribution of a single body of revolution is independent
of 6 {(but may change with B) and the linearized-theory value of the
zero-1ift wave drag is given by equation (3) without recourse to equa-
tion (1). Furthermore, if the body is sufficiently slender that neglect-
ing the change in the area distribution with B produces only a negligible
effect on the zero-lift wave drag, the linearized-theory value of the
zero-lift wave drag of a slender body of revolution with S'(1) = 0 is
jdentical to that given by slender-body theory. The body fineness ratio
required in order to justify neglecting the effect of B on the bedy
area distribution has been discussed in reference L,

Approximations

Aside from the approximations basic to linearized and slender-body
theories, only one approximation is necessary in order to express equa-
tions (3) and (5) in a finite series. This is an approximation of the
second derivative of area distribution, S"(x),' of the equivalent bodies
of revolution.

1The variables B and 6 have been intentionally omitted from the
notation in the interest of simplicity and will be omitted throughout this
report except in cases where these variables are necessary to the analysis,
For bodies of revolution S"(x) = 8"(x,8). If the body is closed at the
rear, 1 is constant, and if the body has a finite base, 1 = 1(B). For
wings and tail surfaces S"(x) = S"(x,B,6) and 1 = 1(B,8).




Let S"(x) be approximated by constant values over small equal
intervals; that is, a smooth curve is represented by a broken curve con-
sisting of adjacent equal-length steps as shown in figure 1. The value
of the second derivative of the area distribution at a given station, x,
is considered to be approximately equal to the value at the beginning of
the interval, station Xxj, in which station x lies, This approximation
can be expressed analytically as

S"(x) = 8"(x1) for x4 < X < Xj4,

If the difference between the values of the second derivative of the
area distribution at two adjacent intervals is defined at the beginning

of the right-hand interval as
A5"(x1) = 8"(x1)-8"(xi-1)

then S"(x) can be approximated by
i(x)
S'(x) = ) 88'(x1)  for m £ S wa (6)
i=2
where the upper limit of summation defines the beginning of the interval

in which station x 1lies. It should be noted that I points are employed
to define 1I-1 intervals for the total length (see fig. 1).

Development of the Method

The present method for calculating zero-1ift wave drag is developed
from analyses which evaluate equations (3) and (5) in light of the approxi-
mation of S"(x) described above.2 All analyses in this section of the
report will be made in physical or dimensional coordinates. Experience
has shown, however, that in performing the actual drag calculations it is
more convenient to use dimensionless coordinates., For this reason, pro-
cedures are given in appendix A for making various types of configurations
dimensionless.

Single bodies of revolution, S'(-11) =0, S'(1) # O.- The general
expression for the zero-1lift wave drag of a slender pointed body of revo-
lution is given by equation (5). It is convenient to write equation (5)
as

2During the preparation of the present report a numerical method for
calculating the zerc-lift wave drag of bodies of revolution by electronic
machines or desk calculators was published in reference 6., Application of
the method of this reference also requires a knowledge of 8S"(x) (exact or
approximate) and may also be used to evaluate equations (3) and (5).




D = D1+D2

where

. f " (x2)5" (362) b | -z | s s (1)
-117=11

and

1 1 l
Do = Q'{[S éi)]a in BR?Z) + S iz)k[l]?"(xg)lnll-ledx%}- (8)

First consider the expression for D,;. Eguation (7) can be written

1
D = - éL S"(x2)F(x2)dxz (9)
T
-11
where
1
F(x2) =f 8" (xy)1n|xy-xz]dxy (10)
-11

Using the form of equation (6) for the variable x; and using the fact
that S"(x) is approximated by a constant over each interval of the
distribution (see fig. 1), one can write equation (10) as

F(X2 2&5”(}(1 f anxl-ledxl
X1=X1
and equation (9) becomes
L 2 1
Dy ~ - E%F }:Aﬁ"(xi) S“(xz)\jp In|x;-xz|dx,dxs (11)
s ~11 Xy1=Xi
Similarly, using the form of equation (6) for the variable xp, one can

write equation (11) as

I I
1
Dy = - 5 z 25" (x4 )08 (x )f f nfxy-xz|axidxe  (12)

i=1 J=l X2—-XJ Xl—Xl
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After the double integration, equation (12) becomes

I I
Dy ) ) a8 ()8 () To (g ) (13)
i=1 j=21
where

Io(xi,xj) = (l-xi)2 <Zn[l-xi| - %) + (l-XJ)2 n|1-x5] - %) -
(xyx3)® (snlxeons| - 3) (1)

The order of the summation in equation (13) can be interchanged. This
permits parts of equation (14) to be evaluated as constants. Hence, if

the contribution to equation (13) of the first term in equation (14) is
summed over i, the contribution of the second term of equation (1k4) is
summed over J and the contribution of the second part of the third term
of equation (1L4) is summed over both i and j, equation (13) can be written

T I I I
D, = - % KIZAS"(XJ)+K22&8"(xi)+}{3-z ZAS"(Xi)AS"<Xj)Il(Xi:Xj)
j=1 i=1 i=1 j=1
where (15)
T )
K, = ZAS"(xi)(Z-xi)Z <1n|7,-xi| - %)
i=1
T
" 2 3
Ko = }2[5 (Xj)(l-Xj) lan-le - é) > (16)
j=1
I I
K - i AS"( ) " 2
a3 = > Xi NS (XJ-)(Xi-XJ-)
i=1 J=1
J
and
Il(xi)xj) = (Xi-Xj)gln'Xi-XJ' (17)

Now consider the expression for Ds given by equation (8). Using
the form of equation (6) for the variable x, and the fact that S"(x)
is approximated by a constant over each interval of the distribution,
one can write the second term of equation (8) as
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I
(1) 5' (1) . K
G(Xg = ” )1n|l-x2|dx2 = - AS (Xj) anZ—X2|dX2
=11 =1 X
’ (18)
After the integration, equation (18) becomes
G(xz2) = " j)[(l'xj)(ln|l'le'l)] (19)

j=1

Again, since S"(x) is approximated by a constant over each interval of
the distribution, it can be shown that

ZAS" (1% ) = S'(1) (20)
and equation (19) becomes
T
6lxe) = B ) g (xg)atg) - st (21)
j=1
where
J(Xj) = (l-xj)ln|l-le (22)

Substituting equation (21) in equation (8)

I
1 t 2 1 "
Do = %{E [s'(1)1% [ln =0 2} + 85 (z)ZAS (XJ)J(XJ)} (23)

Finally, the zero-lift wave drag of a slender pointed body of revolution
with finite base area, such that S'(1) # 0, is given by the sum of
equations (15) and (23) a

I I
D= - f‘—ﬂ KleS J)+K22AS” X4) +K3-z ZAS"(xi)AS"(xj)Il(xi,XJ) +
i=1 J=1
I
1 2 "
% = [5'(1))? [m IO - 2} + S'(Z)ZAS (xJ-)J(xJ-) (24)

where K;, Kz, K3, and Il(xl,xJ) are given by equations (16) and (17),
respectively, and J(xJ) is given by equation (22).
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Single bodies of revolution, S'(-11) = S'(1) = 0.- For a slender
body of revolution pointed at both ends or with finite base area such that
S'(1) = O the last two terms of equation (24) become identically zero and
the zero-1ift wave drag of such bodies of revolution is given by equa-
tion (15). Equation (15) can be simplified for S'(1) = 0. For this
condition, it can be seen from figure 1 (since S"(x) is constant over
each interval, S'(x) is linear over each interval) that

I I
Zas"(xi) = ZAS"(XJ') =0 for S'(1) =0 (25)

Hence, the first two terms of equation (15) vanish. Further, upon
substitution of equation (25) in equation (20) it is easily determined
that

}:Aﬁ" X4 )X }:Aﬁ"(xJ)x =0 for S8'(1) =0 (26)
j=1

With equations (25) and (26) it can be further determined from equa-
tion (16) that Ka is identically zero. Hence, for S'(1) = O,
equation (15) becomes

Dy x & 2 Zas"(xl 55" (x5 Ta (x4 ;) (27)

i=1 j=1

Finally it should be noted that Il(xi,xj) =0 for i =j (see eq. (17))
and in view of symmetry of the matrix of the double summation with respect
tc 1 and J for a single body of revolution the zero-1lift wave drag of
equation (27) can be expressed as

I i-2
Dy ) ) A (ke ()T (ng ) (28)
i=2 j=1

Multiple-component configurations.- For configurations whose
equivalent bodies of revolution satisfy the end conditions given by
equation (4), the zero-lift wave drag of each equivalent body of revolu-
tion is given by equation (28). The zero-lift wave drag of the given
configuration is determined by use of the results of equation (28) for
each equivalent body of revolution in equation (1). If the end conditions
of equation (L) are not satisfied, the results of equation (15) for each
equivalent body of revolution (cobtained from actual oblique areas) must
be used in equaticn (1). It should be noted that equation (24) cannot
be applied to calculate the total zero-lift wave drag of multiple-
component configurations, since this equation is valid only for isclated
bodies of revolution for which S'(1) # 0.
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An analysis of the integral equation for a single equivalent body
of revolution (eq. (3)) reveals that the total zero-1ift wave drag of an
equivalent body of revolution of a multiple-component configuration can
be calculated as the sum of the zero-lift wave drag of each component
alone plus the zero-1lift interference wave drag between all possible pairs
of components. For simplicity consider the complete wing shown by the
solid lines in sketch (b). Each y
wing panel is considered to be one
component of a multiple-component
configuration. The dashed lines for 0 <8¢
in sketch (b) represent the N
"sheared" configuration (described h
in ref. 7 for a given B and 6)
whose normal area distribution is
that of the equivalent body of
revolution. From sketch (b) the
total second derivative of the
combined area distribution of the
two wing panels (i.e., the equiva-
lent body of revolution) is

Sheored wing
Basic wing and
sheored wing for

6:%

Sketch (b)

Sp"(x) = Sg"(x)+sy"(x)

and the total zero-lift wave drag of the equivalent body of revolution
is given by

Xa n*a
Dp = - 5 f f [Sg" (x1)+5g" (x1) 185" (x2)+5y" (x2) ] in|x1-x2|dx1dx2
-x, Yex

-2
b 7D (29)

Expanding the integrand of egquation (29) yields

Xa p¥a
Dp = - 2 SE"(XI)SE"(Xe)ln|Xl-X2!XmdX2-
*p *p
Xa pXa
2 SH"(xl)SH"(xz)anxl-x2|dxldx2-
-Xp Xy
Xg pXg
3 SE"(Xl)SH"(X2)1n|X1-X2ldxldxz (30)
Xp p
The first two terms of equation (30) represent the zero-lift wave drag

alone of each component (wing panels E and H, respectively) of the equiv-
alent body of revolution of the complete wing., The last term represents
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the mutual zero-lift interference wave drag between the components of the
equivalent body of revolution. Equations (29) and (30) indicate that the
analysis is performed over the total length of the sheared configuration.
Since the second derivative of the area distribution of each sheared wing
panel (sketch (b)) is zero over some portion of the total length,
equation (30) can obviously be written

Xa pXa

DT = - __2q f f SE"(xl)SE"(XZ)anxl-x2[dxldx2—
TJ co Co
TTZ T Z

Co Co
? -é_ 1"
S;Jf (jp Sy"(x1)Sy (xz)lnlxl-X2|dxldX2_

b T *p
S Xa
2 1"t n
%h/\ ch Sg"(x1)8y" (x2)1n|x1-x2|dx dx2 (31)
Xp - ?O

Equation (31) indicates that the analysis is performed over the individual
lengths of each component of the sheared configuration. The analytical
solutions of equations (30) and (31) yield identical results; however,

as will be subsequently demonstrated, the approximate solutions of these
two equations may differ,

For convenience, the first term of eguations (30) and (31) will be
designated as Dgg, the second term as Dyy, and the last term as Dgy.
In the notation of the finite series form developed above, the approximate
expressions for Dgp, Dgy, and Dgy are, for an analysis performed over
the individual length of each egquivalent-body component (eq. (31))

I i-1
g% }; };AﬁE"(XEi)ASE"(XEJ)Il(in’XEj) (32)
i=2 j:l

Q

Dgg

Iy 3.1
Dy = é% }Z }:ASH"(XHi)ASH"(XHj)Il(XHi,XHj) (33)
i=2 j=1
1g Iy
}: E:ﬁBE"(XEi)ASH"(XHj)Il(XEi,XHj) (34)

i=1 j=21

1

9o

Dgy

For an analysis performed over the total length of the equivalent body
of revolution, equations (32) to (34) are applicable when the subscript
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of the upper limit of summation is dropped and I represents the number
of points used to divide the total length into equal intervals. Finally,
the total zero-lift wave drag of the given configuration is, in accordance
with egquation (1),

=2i[ Bed6+——f DHHBGd9+—f DEH<Be)d9
(35)

Extending this procedure to configurations with more than two components
the total zero-lift wave drag can obviously be calculated as the sum of
the zero-1lift wave drag of each component alone plus the mutual zero-lift
interference wave drag between all possible pairs of components. On the
other hand, if each equivalent body of revolution is treated as a single
entity and its total zero-lift wave drag is calculated by equation (29),
the total zerc-1ift wave drag of the given configuration is written in
the form of equation (1) as

27
pp(p) = & [ py(s,0)a0 (36)
O

Generally speaking, for a given B, the averaging process of
equations (35) and (36) is performed graphically because the area distri-
butions of the components of the equivalent bodies of revolution change
with 6. The term "averaging process" implies integration with respect
to 6 and division of this result by 2n. In the special case of systems
of slender bodies of revolution, whose individual-compcnent area distri-
butions do not change with 6, it is expedient to calculate the total
zero-1lift wave drag by equation (35) for an individual-length analysis.
For this case the zero-lift wave drag of each component alone is calculated
directly without recourse to averaging since the area distributions cof
all equivalent bodies of revolution for each component alone are identical,
The interference wave drag between pairs of bodies, on the other hand,
must be averaged, as the total area distributions of the equivalent bodies
of revolution for pairs of components do change with 6. As a result of
the present method for calculating zero-lift wave drag, it is possible,
in this special case, to perform the averaging process analytically in
closed form.

Interference between a pair of bodies of revolution, S'(-1,)=5'(1)=0.-

Consider the general arrangement of a pair of bedies of revolution, E

and H, wvhose centers are longitudinally separated by a distance & and
whose aXes are laterally separated by a distance d as shown in figure 2.
Let each of the bodies satisfy the condition of equation (4), and let each
bedy be sufficiently slender that the frontal projection of the area dis-
tribution formed from each body by the oblique planes can be considered

to be the same as the normal cross-secticnal area distribution of each
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body (i.e., independent of B). The zero-1ift interference wave drag
between bodies E and H is given by the last term of equation (39).
Preparatory to developing this term in finite series form, consider the
area distribution of the equivalent bodies of revolution for the
configuration of figure 2,

The area distribution (and all derivatives thereof) of each equivalent
body of revolution of the configuration shown in figure 2 can be found in
terms of sheared configurations in a manner similar to that employed in
reference 7; that is, the area distribution of each equivalent body of
revolution can be determined as the normal cross-sectional area distribu-
tion of a properly sheared configuration, For a specified B and 6,
consider the trace in the xy plane of the oblique plane which passes
through the center of body H (see fig. 2). Using the coordinate system
of body E, the area distribution of the equivalent body of revolution at
XEl would consist of the frontal projection of the area of body E at
Xg, plus the frontal projection of the area of body H at xz = 0, Within

the slenderness requirements of the theory, this projected area is the
same as the normal cross-sectional area of a configuration consisting of
body E and of body H shown by the dashed lines in figure 2, In other
words, body H is sheared a distance |Bd cos 6| rearward for 0 < 6 < x/2
and forward for 1n/2 < 6 < 5. The total area distribution of the equiva-
lent body of revolution consists of the sum of the normal cross-sectional
area distribution of body E plus that of body H properly translated.
Since the effect of 6 on the area distribution of the equivalent bodies
of revolution is merely the translation or shearing of one of the original
bodies, the second derivative of the area distribution of body H can be
determined relative to the coordinate system of body H and related to
the coordinate system of body E by the transformation (see fig. 2)

Xy(g) = Xypt+d+Bd cos 6 (37)
When equations (34) and (37) are combined, the last term of

equation (35) becomes

q J1

Ig Iy
27
DEH(Bd) ~ 5 §;k/\ E: E:ASE"(XEi)ASH"(XHJ)Il[XEi,XH(E)j]dQ
O - .

1=1 J=1
(38)

where from equations (17) and (37)

i

Il(xE.:xH(E).)

j 3 Il[in}xH(E)JJBd}G]

(in—xHj—S-Bd cos 6)%1in in-xHJ-S-Bd cos 6| (39)

To simplify the notation, equation (39) is written
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Ig(aij,ﬁd,e) = (aij-Bd cos 9)21n|aij-ﬁd cos @ (L0)
where
.. = - o)
8y = |xg;-(xg+0)] (41)
For both bodies AS"(x) is independent of 6 and it can be determined

with the aid of figure 2 that the sheared configurations are symmetrical
for 0 <6< nand n £ 8 < 2n; therefore equation (38) can be written

Ig Iy
Dpp(pd) = 5‘; Z ZASE"(XEi)ASH"(XHJ)I(aij,Bd) (L2)
i=1 J=1
where
1 b1t
H(ag5,60) = % [ Tatagy,pa,0)00 (43)

o

A detailed evaluation of equation (43) is given in closed form in
appendix B in terms of the dimensionless coordinates described in
appendix A.

Equation (L2) is also applicable to nonlifting slender bodies of
revolution whose equivalent-body area distributicns are not considered
identical to the normal cross-sectional area distribution of the body,
but are dependent upon . For these cases I(aij,Bd) of equation (42)
is unchanged but AS"(x) must be replaced by AS"(x,B) where AS"(x,B) is
obtained for each body from the second derivative of the frontal projection
of the area distribution formed from each body by the oblique planes.

The importance of equation (42) is that for each Bd it yields the
zero-1ift interference wave drag between a pair of bodies of revolution
from a single set of calculations by an electronic computing machine
(punch cards). Thus, with tabulated values of equation (43), a single
set of calculations evaluates each term of equation (35). On the other
hand, to evaluate equation (36) a separate set of calculations for each
value of 6 and an integration are required. Consequently, it is imme-
diately apparent that the total zero-lift wave drag of a system of slender
bodies of revolutions can he calculated more rapidly and more accurately
if the system is subdivided into components and an individual-length
analysis is used.

Equation (L42) is valid for all B, d, and & greater than or equal
to zero., Several interesting results are indicated by equation (42) when
combinations of these variables are zero. If J and/or & equals zero
the averaging process is automatically eliminated (see egs. (40) and (43)).
In this case equation (42) yields the same result as equation (34). 1In
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particular, if Bd = O by virtue of the fact that d = O the body axes
are coincident and for this condition equation (42) is applicable to each
pair of components ¢f the equivalent bodies of revolution of airplane-type
configuraticns. For the very special case of two identical bodies of
revolution arranged so that d = ® = 0, the result of equation (L2), for
any B = 0, is exactly twice that of equation (27); that is, the zero-
1lift interference wave drag, at any supersonic Mach number, between a
pair of identical bodies of revolution whose axes are superimposed is
twice the zero-lift wave drag of either body alone. A bar over the sub-
scripts denote pairs of bodies of revolution which satisfy these
conditions; thus

Drr(B) = 2DgE(8) = 2Dmm(B) (4k)

Equation (4k) is also valid for a pair of identical bodies of revolution
which satisfy the conditions £ =3 = 0 and d # O, and for the equivalent
bodies of revolution of a complete wing for B 2 0 and 6 = «/2 (see
sketch (b)). The latter result is immediately cbvious from equation (31),
since, for 6 = /2, Sg"(x) = Sg"(x), -xp = -co/2, and x5 = Xq.

Interference between a pair of bodies of revolution,

St(-11) =0, 8'(1) # 0.- It may seem logical that the same procedure
employed above for a pair of bodies of revolution with S'(-11)=5'(1)=0
can be used to develop a zero-lift interference wave-drag equation for a
pair of bodies of revolution with S'(-11) = 0 and S'(1) £ O merely by
using equation (37) to evaluate J(x;) of equation (24) in analytical
form for all 0 < 6 < =, Unfortunateiy, this is not the case, It will
be recalled that equation (24) was developed from slender-bedy theory
for an isolated body of revelution., However, a zerc-lift interference
wvave-drag equation for bedies of revolution with these end conditions

can be developed by using equation (37) and the proper limits of integra-
tion for each body in equation (7). Following the same analysis as that
used for equaticn (7), an equation similar to equation (15) will evolve.
The new expressions for K;, Ks, and Kz will be a function of 1ip, 1y,
Xi, Xj, Bd, 5, and cos 6. The last term will be identical tc the unaver-
aged expression of equation (38). ZEach term of the new equaticn can be
averaged analytically in closed form. The averaged expression for the
last term of the new egquation will, of course, be given by equation (42).
It is to be emphasized that for bodies of revolution with S'(-1,) =0
and S'(1) # 0 it is mandatory to use the second derivative of the fron-
tal projectiocon of the area distribution formed from each body by the
oblique planes.

Procedure for Applying the Method

Zero-1ift wave drag.- Application of the eguations developed above
depends upon the geometry of the configuration being considered, The
equations of this report to be used to calculate the zero-1lift wave drag
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of each component of an equivalent body of revolution and the zero-1ift
interference wave drag between pairs of components of an equivalent body
are summarized in table T for several configurations together with the
averaging process generally regquired to obtain the zero-lift wave drag
of the given configuration.

As a result of the basic approximation of S"(x) each of the
equations listed in table I is easily adapted to electronic-machine com-
puting techniques, in particular, to punch-card ccmputing machines.

Values of Il(Xi,Xj) of equation (28) and of Ig(in,xHj) of equation (34)

can be obtained from values of I(aij,Bd) of equation (42) for pd = 0.

Hence, if the present method is to be adopted, cards for the values of
I(aij,Bd) can be punched for many values of the arguments and permanently
stored for reuse with values of AS"(x) of a particular configuration to
be analyzed. This accomplished, the problem of the application of the
present method resolves itself into the guestion of how the values of
AS"(x) at the points which divide S"(x) into equal intervals are to be
recorded on punch cards., Generally it will not be possible, or even
feasible, to calculate AS"(x) at each of these points. Therefore, the
procedure employed 1s to record the values of S"(x) on a set of punch
cards with the aid of an electronic machine called a telereader; that is,
one can determine 8"(x) at the desired points from a plot of S"(x) vs. x.
Then, as noted earlier,

AS"(xq) = 8"(x1)-8"(x1_;)

This procedure has been found to yield numerical solutions of the
zerc-1lift wave-drag equations in very good agreement with analytical
solutions of equation (3) for configurations with no singular pcints in
S"(x). When singularities occur in $S"(x), the telereader yields values
of 8"(x) in the region of the singular points which are subject to
errors. These errors have been found to have a predominant influence on
the calculated wave-drag results when singularities occur at the ends of
the distribution. When singular points in S"(x) occur in the inboard
region cf the distribution these errors have been found to have only a
small effect on the accuracy of the calculations. In order to circumvent
the detrimental effect of singularities at the ends of S"(x), it was
reasoned that, since S"(x) was approximated by constant values over equal
intervals, S'(x) is linearly approximated over these intervals and could
be determined by the telereader from plots of a continucus variation of
S'(x) vs. x. Then it becomes a simple matter to define a mean value of
the second derivative of the area distribution as

St (Xi+1)-8' (Xl)

= for x3 < x < X444 (45)

S n x =
m" (%) Xi417X]
from which ASy"(x) is easily obtained. The results of many calculations,
not presented here in the interest of brevity, demconstrate that the use
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of Sp"(x) rather than S"(x) yields zero-lift wave-drag results which
are invariably more accurate for distributions with singularities. The
use of Sp"(x) rather than S"(x) for distributions with no singularities
reduces the accuracy of the calculations by less than one tenth of a
percent., Consequently, it is recommended that Sp" (%) always be used in
the present method. All calculations of this report made by the present
method have employed Sp"(x).

A final point of procedure in applying the present method concerns
the arbitrary choice of the number of points selected to divide the second
derivative of the area distribution into equal intervals. Obviously, the
number of points selected will affect the accuracy of the zero-lift wave-
drag calculations in a manner similar to that which the choice of the
number of terms of the infinite series affects the accuracy of the results
obtained by the method of references 2 or 3. It has been found in the
present analysis and in reference 3 that 201 points (200 equal intervals)
is a practical limit for which punch-card computing machines should be
programed, The results of many calculations indicate that in some special
cases as few as 10l points, or even less, yield zero-lift wave-drag results
with acceptable accuracy. However, the most accurate results have been
found to be consistently obtained with 201 points. Consequently, all
calculations used to evaluate the present method have employed 201 points.
The results of a special detailed analysis of the effect of the choice of
the number and the location of equally spaced points on the zero-lift wave
drag of one configuration are presented in the next section of this report,

The development of the present method for calculating zero-1ift wave
drag and the outline of the procedure for applying the method have merely
presumed that the second derivative of the area distribution (S"(x) or
Sp"(x)) is available for all components of all equivalent bodies of revo-
lution of a configuration. The actual determination of these distributions
is probably the greatest task required in order to perform zero-1lift wave-
drag calculations by the present method. An analytical procedure for
computing S(x) for wings and tail surfaces is available in reference 7
and has been expanded in reference 8 for wings (with arbitrary thickness
distributions) in the presence of bodies. A method for finding S(x)
and S'(x) (from which Sp"(x) is obtained) is given in reference k4 for
bodies of revolution and wing and tail-surface components of equivalent
bodies, Because the area distribution of wing and tail-surface components
of equivalent bodies of revolution changes with B and 6, and because the
airfoil-section thickness distribution is not generally available in
analytical form, the graphical method of reference 4 can become tedious.
The need for a more simplified method for finding S(x), S'(x), and even
S"(x) for wings and tail surfaces, obviously, exists. To satisfy this
need a simplified method has been developed for the analytical calculation
of S(x), 8'(x), and S"(x). The formulation of analytical expressions
for these distributions obviously depends upon an analytical expression
for the plan-form thickness distribution. Analytical approximations of
the airfoil-section thickness distribution as well as the complete



21

plan-form thickness distribution are given in appendix C. The analytical
expressions are given in terms of a single parameter which identifies
each of the sheared configuration plan forms described in references 7
and 8. This single parameter combines the dependence of the sheared plan
forms upon both P and 6. The analytical method for calculating S5(x),
S'(x), and 8"(x) is presented in appendix D.

Wave drag.- The general form of equation (15) can be employed to
calculate the linear-theory wave drag for planar and nonplanar 1lifting
configurations when, in addition to the second derivative of the area
distribution, the force term of equation (2) is known. When the force
term is also known the second derivative of the area distribution of
each equivalent body of revolution is represented by the combined term

S"(XJBJG) - 'é%‘ L'(X;B:Q)

and for a specified P and 6 equation (2) has the same form as
equation (3). Hence in equation (15) one merely replaces NS (x) by

A [S"(x) - 5% L'(x)}

If it is desirable to separate the effects of thickness and 1lift on the
wave drag, equation (2) can be expanded by multiplying out the integrand.
This manipulation yields three terms for the wave drag of each equivalent
body. Two of the terms, identical or similar in form to equation (3),
represent the separate contributions to the wave drag of thickness and
1ift and can be evaluated using the form of equation (15). The third
term, similar in form to the last term of equations (30) and (31), repre-
sents the interference wave drag between thickness and 1ift and can be
evaluated using the form of equation (42) with values of I(aij,Bd) for
gd = O. 1In general, L'(x,B,8) is difficult to obtain; however, a review
of the literature revealed that reference 9 provides a systematic method
for computing wing pressure distributions for wings with subsonic leading
edges and supersonic trailing edges. From this information it is possible
to obtain L(x,B,6) and L'(x,B,0). A procedure for finding these quan-
tities in terms of the lift distribution of sheared wings is briefly
outlined in appendix E for wings with zero taper ratio.

Vortex drag.- The general form of eguation (15) can also be used to
calculate tne vortex drag of a finite-span wing. The familiar form of the
equation for the vortex drag is

b
Dy = - ifg [ ' (y )0 (yo)inly, -y, |dy,dy (ko)
u“_ELL 1 2 172 12
2
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where p 1s the free-stream density and TI''(y) is the slope of the
spanwise circulation distribution. Equation (46) is identical in form
to equation (7). By means of the same approximation of TI''(y) as was
used for S"(x), the vortex drag can be calculated by equation (15) with
a, AS"(x), x, and 1 replaced by p/2, AU''(y), y, and b/2, respectively.

EVALUATION OF THE METHOD

The method will be evaluated by calculating the zero-1lift wave drag
of several bodies of revolution and comparing the results with those
obtained by analytical solutions (when available) and by the method of
reference 3, The calculations are restricted to Mach number 1 in order
to aveoid the integration required of the method of reference 3 at Mach
numbers greater than 1. Subsequently, the merits of the present method
for Mach numbers greater than 1 will be briefly examined. The two basic
arrangements of the bodies considered in the evaluation are presented in
figure 3. As shown in figures 3(a) and 3(b) the body centers are separated
longitudinally a distance & =0 (8§ = 0) and & = 21 (§ = 2), respectively.
For these arrangements the wave-drag analysis is performed over the total
lengths 21 and 41, respectively. For the arrangement of bodies with
® = 0 the wave-drag analysis is also performed over the alternate length
L1 as indicated in figure 3(c). Equations defining the dimensionless
area distribution of the bodies used in these arrangements are given below:

Body Equation of area distribution
1 51(8) = 3 (182" (47)
2 82(5) = 8 (1-62)7/2 (48)
3 Ba(s) - S (143)7/7 (k9)
4 Ba) = 8 (1-¢2)°/2 (50)
5 S5(8) = % £(1-7)%/7 (51)
6 Bale) = & £(1-£2)%/2 (52)
7 87(8) = & £(1-47)7'2 (53)
8 Ba(t) = %23—8 §(1-£2)%'2 (54)

For each body -1 < &£ £ 1. Equations (47) to (50) are even functions with
the coefficients so chosen that the dimensionless value of the volume of
each body is =n/2. Equations (51) to (5L) are odd functions corresponding
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to bodies 1 to k4, respectively, and the volume of each of the bodies 5
to 8 is obviously zero. It should be noted that bodies 1 and 5 have
singularities in S8"(&) at both ends (i.e., at & = =1 and £ = 1).

Comparisons will be made of the total zero-1ift wave drag for
several pairs of bodies, the separate contribution of each body alone to
the total, and the separate contributicn of the interference between
bodies. The interference drag results will be considered first, since,
as discussed in the METHOD section and amplified in the following para-
graphs, these results provide information from which calculations can be
made of both the total wave drag of a pair of bodies and the contribution
of each body to the total. Before presenting the results of the calcula-
tions it is desirable to mention the specific computing procedures
employed for the bodies considered herein. These specific computing pro-
cedures were employed in order to obtain consistently the most accurate
results by each method.

Only the zero-lift interference wave drag was calculated by an
electronic computing machine for both the present method and the method
of reference 3. Values of 5(&) and Sp"(t) were calculated at each of
the 201 points from equations (47) to (54). The existing machine-
computing program at Ames Research Center for the method of reference 3
yields directly, for a given value of B cos 6 and up to 49 terms, only
the total zero-lift wave-drag results based on an analysis performed
over the total length of a configuration. However, interference drag
results were obtained by a special manipulation of the data obtained from
the existing program. This manipulation is described in appendix F which
presents the computing procedure used in this report for the method of
reference 3.

Four significant figures were retained for all machine-computed
calculations of the interference drag results for both methods. For the
configurations of figure 3(b) with singularities in S"(t) at the ends
of at least one body, only two significant figures were possible in the
case of the present methecd. This loss of significant figures is a direct

result of the large values of Sp"(£&) at and near the ends of the body.

The total zero-lift wave drag of a pair of bodies of revolution is
given by the sum of the contribution to the total cf each body alone and
the interference between bodies (see eq. (35)). The body-alone contri-
bution can be determined from the interference results in accordance with
equation (LL4). Hence, by combining equations (35) and (4L) the following
equations can be written for the dimensionless total zero-1lift wave drag:

~

D(a)+Dgy(a) (55)

N+

By = 5 Bgla) +

for the configurations of figure 3(a),
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Dp = % ﬁﬁﬁ(c) + % ﬁﬁﬁ(c)+ﬁgH(b) (56)

for a total-length analysis of the bodies in figure 3(b), and

By = £ Bgg(a) + £ B(a)+Bgy(v) (57)

for an individual-length analysis of the bodies in figure 3(b). In
equations (55) to (57) the terms in parentheses designate that part of
figure 3 which indicates the configuration length over which the wave-
drag analysis is performed.

Accuracy of Calculations for Interference

The dimensionless zero-lift interference wave drag for the bodies
in the arrangements of figure 3 is presented in table II. Rough sketches
of figures 3(a), 3(b), and 3(c) are duplicated in the column headings to
indicate the arrangement of the bodies and the length over which the wave-
drag analysis is performed. In column 1 of table IT are tabulated all
possible combinations of pairs of bodies whose area distributions are
defined by equations (L47) to (54). Note that the bodies with singularities
in §"(&) at the ends are marked with an asterisk. Columns 2 and 3 of
table II 1list the analytical values of the wave drag. For & = 2 the
analytical solution of the last term of equation (31) for nonidentical
bodies has not, as yet, been obtained; therefore, analytical solutiomns
for only identical pairs of bodies are presented in column 3. However,
it is felt that the pairs of identical bodies with & = 2 are sufficient
to evaluate the accuracy of the present method for calculating zero-1lift
wave drag.

Bodies with & = 0.- For all pairs of bodies in the arrangement of

figure 3(a) for which data are available both methods yield zero-lift
interference wave-drag solutions which are accurate to within a fraction
of 1 percent of the analytical solutions (compare columns 2, 4, and 7 of
table IT). For configurations with no singularities or discontinuities
in S§"(£) the method of reference 3 yields exactly the analytical solu-
tions. The data of columns 5 and 8 of table II are included merely as
data from which the body-alone contribution to the total zero-lift wave
drag can be obtained for configurations of figure 3(b) which are analyzed
over the total length of the configurations. It will be noted that ana-
lytical solutions for configurations of figures 3{(a) and 3(c) ars identical
(see column 2 of table IT); whereas, the numerical solutions by both
metheds are less accurate for the configurations of figure 3(c).

Bodies with 5 = 2.- For all pairs of bodies in the arrangement of
figure 3(b) for which data are available both methods yield zerc-1ift
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interference wave-drag solutions which are accurate to within a fraction
of 1 percent of the analytical solutions for pairs of bodies with no
singularities or discontinuities in &"(&) (compare columns 3, 6, and 9

of table II). For pairs of bodies, at least one of which has singularities
in S§"(&) at the ends, the method of reference 3 and the present method
yield zero-1ift interference wave-drag solutions which are accurate to
within -8 and +14 percent of the analytical solutions, respectively.
However, these figures are percentages of small values of the interference.
Furthermore, it should be recalled that with the use of the existing
machine-computing program the results for these bodies by the present
method are based on only two significant figures. Bodies 1 and 5, for
which calculations by the present method are in greatest error, are bodies
with singularities at the ends which have minimum zero-lift wave drag at
transonic speeds for a given volume and length and a given first moment

of area, respectively. For these reasons an evaluation of the accuracy

of the zero-lift wave-drag results computed by the present method for
these bodies should constitute the most severe test of the method.

Accuracy of Calculations for Body Alone

In view of the simple relationship given by equation (4l4) between
the zero-1lift wave drag for a body alone and the interference between a
pair of identical bodies with & = O, body-alone results have not been
tabulated. It is obvious, however, that both methods yield numerical
solutions for the body-alone zero-lift wave drag which are accurate to
within a fraction of 1 percent of the analytical solutions.

Accuracy of Calculations for Total Configurations

The dimensionless total zero-lift wave-drag results for only pairs
of identical bodies in both basic arrangements of figure 3 have been cal-
culated using the data of table II in equations (55) to (57) and are
presented in table III. These pairs of bodies are considered sufficient
to evaluate the accuracy of total zerc-1lift wave-drag calculations by the
present method in that these bodies represent the extreme deviations from
the analytical solutions and are generally typical of all the pairs of
bodies in their demonstration of the effect of the different lengths used
in the analysis. The data in parentheses in table III indicate the percent
deviation from the analytical solutions.

Bodies with & = O.- Since the total zero-lift wave drag for these
bodies was obtained from the zero-1lift interference wave drag of these
bodies, it is clear that the accuracy of the total wave-drag results for
these bodies is consistent with that of the interference wave-drag results;
that is, for all pairs of bodies in table III both methods yield total
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zero-1ift wave-drag solutions which are accurate to within a fraction

of 1 percent of the analytical solutions (compare columns 2, L4, and 5 of
table III). For configurations with no singularities or discontinuities
in §"(t) at the ends, the method of reference 3 yields exactly the
analytical solutions.

Bodies with & = 2.- Total zero-1lift wave drag for these bodies can
be calculated from an individual- or a total-length analysis. As noted
in the METHCD section and demonstrated in column 3 of table III, the
configuration length used in the analysis does not influence the analyti-
cal solutions. The length does, however, affect the numerical solutions.
The effect is small for the simple bodies of revolution of this report,
even for bodies with singularities at the ends of S"(&) (see table III).
Preliminary calculations for a more general airplane-type configuration
indicate, however, that the influence of the length may not be small for
such configurations in that S"(&) of the sheared wings of many equivalent
bodies is discontinucus. Therefore, the authors feel that some discussion
of the length is warranted for the present configurations even though, in
this case, the effect 1s small.

For pairs of bodies with no singularities or discontinuities in
8"(t) both methods yield results which are accurate to within one third
of 1 percent of the analytical solutions regardless of the length of
analysis (compare columns 3, 7, and 9 for the present method and columns 3,
6, and 8 for the method of ref. 3). Even though the deviations from the
analytical solutions are very small for each length of analysis, a defi-
nite trend toward more accurate sclutions for the individual-length anal-
ysis is evidenced by the results for these bodies. For pairs of bodies
with singularities in S"(£) at the ends (bodies 1x1 and 5x5) both methods
yield results which are accurate to within *3 percent of the analytical
solutions. The same trend toward more accurate solutions for the
individual-length analysis 1s evidenced by the results for these latter
bodies for the method of reference 3 but not, however, for the present
method, 1In spite of these seemingly anomalous results for the present
method, and even though the effect of length of analysis is small, the
data of table IITI indicate that both methods yield comparable total zero-
1lift wave-drag solutions which are in closer agreement with analytical
solutions when the wave-drag analysis is perfcrmed cver the individual
lengths of the bodies.

Bodies with 0 < 5 < 2 and § > 2.- The total zero-lift wave-drag
calculations at Mach number 1 (or at any supersonic Mach number) for
pairs of bodies arranged with these values of § will be more accurate
than those discussed above for & = 2 if the wave-drag analysis is always
based on an individual-~length analysis. The body-alone contribution to
the total zero-1ift wave drag is, of course, independent of 3; but both
the accuracy and magnitude of the interference contribution are affected
by 8. As 8 becomes less than 2, the interference calculations become
more accurate as a result of a larger number of pcints of the 201-pcint
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analysis lying on each body. As the value of % increases beyond 2, the
interference calculations are subject to greater inaccuracies, yet the
magnitude of this porticn of the wave drag diminishes to an almost
negligibly small percentage of the total zero-1lift wave drag.

Accuracy of Calculations at Mach Numbers Greater
Than 1 for Total Configurations

A complete evaluation of the present method as a tool for calculating
total zero-lift wave drag (eq. (35)) should include an evaluation of the
accuracy of the method at Mach numbers greater than 1 for the configura-
tions of this report as well as the more general airplane-type configura-
tions. No guantitative evaluation of this aspect of the accuracy will be
made; however, from the information available in this and the previous
section of this report it is possible to make a qualitative evaluation.

Pairs of bodies of revolution, - The area distribution of each body
does not change with 6; therefore, the zero-1lift wave drag of each body
alone is obtained, with comparable accuracy, from a single set of calcu-
lations by each method. The area distribution cof the combined bodies of
each equivalent body of revolutiocon dces change with 6. For the method
of reference 3 the zero-lift interference wave drag between bedies must
be computed for several values of 6 and the results averaged as dis-
cussed relative to equations (35) and (36); whereas, for the present
method the zerc-lift interference wave drag is obtained from a single set
of calculations, analytically averaged for all 6. As a result of the
aversging process reguired of the method of reference 3, it can be stated
that the present method yields the mcre direct and probably the more
accurate total zero-1lift wave-drag results for systems of bocdies of
revolution.

Airplane-type configurations.- The area distribution of the various
components of alrplane-type configurations changes with 6. Hence, for
these configurations both methods, in general, yield total zero-lift wave-
drag results with a comparable accuracy. If a particular configuration
contains several body-of-reveclution compenents such as the airplane-type
configuration shown in table I, the present method will probably yield
more accurate results for the reasons mentioned above concerning the
zerc-1ift interference wave drag between bodies of revolution.

Computaticnal Time Required

An evaluation cf the computational time reguired by the present
method 1s equally as important to the complete evaluation of the method
as is an evaluaticn of the accuracy of the method. Just as the mecst
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accurate zero-l1ift wave-drag values obtainable by the present method and
the method of reference 3 were used to effect an equitable evaluation of
the relative accuracy of the methods, so it is desired to evaluate the
relative computational time for beth methods on the basis of equitable
electronic-computing machine techniques. Accordingly, this evaluation
will be based upon the following assumptions:

i. The zero-lift wave-drag equations for an equivalent body of
revolution for both methods are programed in such a manner to permit
calculations of the total zero-lift wave drag of multiple-component con-
figurations from separate calculations of the zero-lift wave drag of each
component alone plus the zero-1lift interference wave drag between
components.

ii. The initial data for each method are obtained by a telereader
from a plot of S(&) or 5'(&) vs. &, as the case may be. It should be
recalled that values of 8p"(¢) are calculated from values of &'(¢)
according to equation (53), and this operation is assumed to be included
in the program.

iii. 8(&) and 3'(t) are obtained for wings and tail surfaces by an
analytical method similar to that presented in appendix D.

The present method and the method of reference 3 require the same
computing time to calculate the total zero-lift wave drag of any configu-
ration at Mach number 1. If plots of the distributions are available,
calculations for one equivalent body of revolution require up to 1-1/2
hours from the beginning of the telereader operation to the final answer.
For configurations with components whose equivalent body area distributions
change with 6, both methods require the same computational time because
the time required to calculate the total zero-lift wave drag of each
equivalent body is identical and the averaging process can be performed
similarly for both methods. For configurations consisting entirely of
body-cf-revolution components, both methods require the same time to cal-
culate the zero-lift wave drag of each body alone. The present method,
however, affords a saving in time required to calculate the zero-lift
interference wave drag between pairs of bodies because the averaging
process cannot be performed similarly for both methods. The present
method inherently averages the interference contribution of all pairs of
equivalent bodies with a single set of calculations; whereas, by the
method of reference 3, the averaging process must be performed for the
results of a finite number of pairs of equivalent bodies of revolution.
Consequently, the saving in time is directly proportional to the number
of pairs of equivalent bodies (or values of 9) necessary to define the
integrand of the last term of equation (35). For example, for two bodies
of revolution (the minimum required for interference) a minimum of five
equivalent bodies is required. Hence, zero-lift interference wave-drag
calculations by the present method would only require 20 percent of the
computing time required of the method of reference 3, and the total
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zero-1ift wave-drag calculations would require 60 percent of the computing
time required of the method of reference 3. If more than five equivalent
bodies were required, the saving in computing time would be even greater,
as would be the case for a system of more than two bodies of revolution.

Ultimate Capabilities of the Present Method

The analyses presented in this report have developed a numerical
method for calculating zeroc-lift wave drag which employs a knowledge of
the second derivative of the area distribution of a configuration and
which 1s easily adaptable to electronic-machine computing equipment. The
ultimate desire, however, is the development of a method for computing
zero-lift wave drag by ordinary desk computing techniques. As a result
of a detailed analysis of the effect of the choice of the number and the
location of the points used to divide §m"(§) into equal intervals, such
a method appears possible for components of a configuration. Presented
in figure 4 are the results of this detailed analysis for a single body
of revolution whose area distribution is composed of three parabolic arcs.
The dimensionless zero-lift wave drag tabulated in figure 4 demonstrates
that as few as 25 points yield a solution accurate to within 1.75 percent
of the analytical solution. This suggests that by a judicious choice of
intervals (not necessarily equal) a fewer number of points may be con-
sidered which will yield numerical solutions in almost exact agreement
with analytical solutions and thereby make desk calculastions feasible.
Preliminary calculations indicate that zerco-lift wave-drag values of any
one component of a configuration which are essentially identical to the
analytical values can be obtained with as few as 10 unequal intervals if
the intervals are systematically determined from information concerning
the source strengths which define the geometry of the component.

CONCLUDING REMARKS

A numerical method based on linearized and slender-body theories,
which is easily adapted to electronic-machine computing equipment, has
been developed for calculating the wave drag of single- and multiple-
component configurations from a knowledge of the second derivative of the
area distribution of a series of equivalent bodies of revolution. Zero-
lift wave-drag results have been calculated at a Mach number of 1 for
several simple analytical shapes (bodies of revolution) by the present
method and by a method which employs the Tchebichef form of harmonic
analysis of the configuration area distribution. The relative accuracy
and computational time required of both methods to calculate zero-lift
wave drag at a Mach number cf 1 have been evaluated by comparing the
zero-1ift wave-drag solutions for these simple shapes ccmputed by both
methods with those obtained from analytical solutions of the wave-drag
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equations. TFrom these results it was possible to evaluate alsoc the
relative accuracy and computational time required of both methods to cal-
culate the zerco-lift wave drag at supersonic speeds. The following remarks
are warranted as a result of these evaluations.

For the pairs of bodies considered in this report at a Mach number
of 1, both methods yield numerical solutions for the zero-lift wave drag
of each body alone to an accuracy of a fraction of 1 percent of the ana-
lytical solutions. Calculations by both numerical methods of the zero-
1ift interference wave drag between bodies were generally accurate to
within a fraction of 1 percent; however, in some special cases for which
the interference was small, these results were accurate to within only
-8 and +14 percent of the analytical values for the harmonic analysis and
the present method, respectively, Total zero-lift wave-drag solutiocns
generally were calculated more accurately as the sum of the zero-lift
wave drag of each body alone plus the interference between bodies. All
total drag results for bodies with no singularities or discontinuities in
the second derivative of their area distributions were accurate to within
a fraction of 1 percent of the analytical solutions, and for bodies with
singularities the results were accurate to within 3 percent of the
analytical solutions. Both methods required the same computing time.

For total zero-lift wave-drag calculations at supersonic Mach numbers,
the relative accuracy and computing time required by both methods is com-
parable for airplane-type configurations, TFor systems of bodies of revo-
lution both methods yield similar results with comparable accuracy; however,
the present method only requires up to 60 percent of the computing time
required of the harmonic-analysis method for two bodles of revolution and
less time for a larger number of bodies.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif.,, Oct, 17, 1958
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APPENDIX A
DIMENSTIONLESS ZERO-LIFT WAVE-DRAG EQUATIONS

In order to take advantage of the decrease in the number of parameters
resulting from similarity considerations and to facilitate the calcula-
tions, the quantities defined in the METHOD section will be made dimen-
sionless, The procedures presented apply to all of the sheared or
equivalent configurations previously discussed. However, in the interest
of simplicity, the dependence of the quantities upcn 8 and 6 will be
omitted from the notation,.

To establish a general dimensionless coordinate system each coordinate
is divided by a characteristic length, areas are divided by some reference
area, volumes are divided by some reference volume, and so on., In this
manner the relationship between dimensional and dimensionless lengths and
longitudinal area distributions can be written

3 =§ (A1)
"
C _kz (Aa)
-1 x5 1
~ 1
S(g) = = 3(x) for (AL)
5g g L
ky = ° T ky

where kg, ky, and k; are characteristic lengths in the x, y, and

Z directions, respectively, and Sg 1is the reference area. From a
differentiation of equations (Al) and (Ak) the relationship between the
derivatives of the dimensional and dimensicnless area distributions are
found to be

mm=§wu> (A5)
§%m=%§wu) (46)

With the aid of equations (Al) to (A6), the general relationship between
the dimensional and dimensionless zerc-lift wave drag can be shown to be
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2
D = 55—) ab (A7)

Values of the characteristic lengths and reference areas are tabulated
below for bvodies of revolution and wings or tail surfaces,

Configuration Ky ky ky SR

Body of revolution 11=1 | --- -—- Se
Wing or tail surface | co/2 | bo/2 | to | tol(bo/2)

The characteristic length 1 or 1,
is the half-body length and S is
the maximum frontal area of the
body. The characteristic lengths
for wings or tail surfaces are
shown in sketch (c). By means of
equations (Al) to (A6) and the
above table, the dimensionless zero-
1ift wave-drag equations for both
the present method and the method
of reference 3 can be determined
as discussed in the following
paragraphs.

Sketch (c)

PRESENT METHOD

Single Body of Revolution, $'(-1,) =0, 8'(1) #0

The zero-lift wave drag for this kind of body is given by eguation (5),
from which the dimensionless form is determined to be

1.1
D= - é%ljp u/‘ 8"(6,)8"(e5)(in]E -k, |+1n 1)AE AL, +
-1 V-1

1

[8'(1))1° [Zn ;3”2 - - Zn@] N §r(l)f §"(e ) (inf1-¢ |+in 1)at,

2 R(1 -

Y o

(A8)
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Tn accordance with equations (7) and (8), the dimensionless expressions
D, and Do, are given by the first and second terms of equation (A8),
respectively.

Single Body of Revolution, S'(-1;) = S'(1) =0

For this kind of body the second term of equation (A8) is identically
zero and the dimensionless zero-lift wave drag is given by only the first
term, This first term can be simplified, however, for bodies of revolution
with 3'(-1) = 3'(1) = 0. After an integration by parts, it is a simple
matter to show that the 1In I term vanishes. Hence,

1 1
51 - E];_T.f f gn(gl)gn(gz)lnl§1-§2|d§ld§2 (A9)

Multiple-Component Configurations

The general relationship between the dimensional and dimensionless
equations for an eguivalent body of revolution of a multiple-component
configuration is given by equaticn (AT). The total zero-lift wave drag
of an equivalent body of revolution of a two-component configuration can
be expressed by the unaveraged expression for equation (35). Hence, if
each component is made dimensionless with respect to its own characteristic
length and reference area, the relationship between the dimensional and
dimensionless total zero-1ift wave-drag equations is

by - (%)qu% : (i—f;—);qu + () () ab (20)

Experience has demonstrated that in the majority of cases it is more
convenient to make the complete configuration dimensionless with respect
to only one of the components. In this case equation (A7) is applicable
to the total configuration and values of Sg and ky are used for only
one {either) component.

In view of the foregoing, the dimensionless finite-series form of
the zero-1lift wave-drag equations developed in the METHOD section of this
report can be obtained if AS"(x), x, and 1 are replaced by AS"(t), &,
and l/kx, respectively, and if the logarithm terms of the equations for
Do and/or D; are properly evaluated. As a typical example, the dimen-
sionless zero-lift wave-drag equation for a single body of revolution
with S'(-1,) = 8'(1) = O can be written (see eq. (28))



I i-1
D, = él;' z zé\g"(ﬁi)ég"(éjﬁl(&i;éj) (A11)
i=2 j=1

where, from equation (17),

Ti(ks,85) = (3-85) e -t | (A12)
METHOD OF REFERENCE 3

Use of equations (Al) and (A5) in equations (Fk), (F2), and (F3)
yields the dimensionless zerc-lift wave-drag equation for an equivalent
body of revolution for the method of reference 3

b=f ) ol (A13)
n=1
where
o ~
Ay = %L/\ aiég) sin(np)de (ALL)
-1
and
_f 11+l
E = (ii§5> cos @ (815)

SIMILARITY CONSIDERATIONS

With the definitions of kx, ky, kg, and SR ‘tabulated above, a
general expression for the wave drag, at any supersonic Mach number, for
a system of bodles of revolution is

2
Dy = () aby (B %—) (816)

where
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and for an airplane-type configuration is
b Z b
Dy = { %o c—g—) aby <B o (A17)

where

=~ bo 1 2ﬂ~ by
W () 5[0
o}

I

Dividing both sides of equations (Al6) and (Al7) by q and a proper
reference area, one obtains the wave-drag coefficient

2
NONE
2
cny = & (o }2%) By <s §%> (A129)

For bodies of revolution Sp = S5 = ﬂ/hdog, wvhere dg 1s the maximum
diameter of the body. For airplane-type configurations be/Sw = A, the
aspect ratio of the wing and to/Co = To, the maximum thickness ratio of
the airfoil section. Therefore equations (A18) and (Al9) can be written

Cpg = ™ %)2"1)3 <B %) (A20)
2

2 CD_S_> By <B 1%2_ (A21)

Equations (A20) and (A2l) demonstrate the advantage to be gained from
similarity considerations which are afforded as a result of wave-drag cal-
culations made in a dimensionless coordinate system. From equations (A20)
and (A21), it is clear that dimensionless wave-drag calculations of a
single configuration, in effect, yield the wave-drag coefficients for an
entire family of related configurations. The wave-drag coefficients of
geometrically similar families of bodies of revoluticn are related by the
fineness ratio of the bodies, and those for geometrically similar airplane-
type configurations are related by the aspect ratio and maximum thickness
ratio of the wings.

It
=
3

O

oy
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APPENDIX B

EVALUATION OF THE INTERFERENCE INTEGRAL FOR

PAIRS OF BODIES OF REVOLUTION

In the METHOD section of this report the zero-lift interference wave
drag between a pair of bodies with S(-131) = S(1) = 0, in the arrangement
shown in figure 2, is given by equation (42), If the complete configura-
tion is made dimensionless with respect to body E, that is, both x coor-
dinates are divided by 1Ip and both area distributions are divided by
Sg,» equation (42) can be written (see appendix A)

Ig Iy

2
5 S an a.n F s
Dg(B) = %(l—f)) Z XASE (65, )05y" (er,)T(as5,5) (B1)
i=1 j=21
where
k1
T(aij,ﬁ) = %L/ﬂ (aij-ﬁ cos 6)2Zn|éij-ﬁ cos 6|de (B2)
[o]
81y = tg;-(8H+5) (B3)
B - £d (Bh4)

This appendix will evaluate the integral function defined by
equations (B2) to (B4). Using the substitution

éij
= = B5
v =3 (B5)
one can write equation (B2) as
1T ¢
T(éij,ﬁ) = B2 %L/\ % (y-cos 6)21n(y-cos 6)2d6+1n B %U/‘ (y-cos 6)2d6
o]
(B6)

Let

n

K(y) = %k/ﬂ L (y-cos 6)%in(y-cos 6)%as (B7)
]



37

If the 1ntegrand of equation (B7) is grouped as 1In(y-cos 6)% and
1/2 y-COos 9) d6, integration by parts yields

1 6 sin 6
= 2 = - 2
K(y) <? + é) ln|7+l| <} + ) d[\ 0ol 6 dae +

T 14
in2 in2
2y 1 sin®6 49 _ 1 1 sin=g cos 6 44 (B8)
7 y-cos O 2 y-cos 6
ol o
Since
- 2 2.
sin“8 _ l-cos®6 _ y+cos @ - —L 1
y-cos 6 y-cos 6 y-cos 6
and
=) 3 2
sin®6 cos 6 _ cos 6-cos36 _ 2 2.1) - y(y2-1)
y-cos 6 y-cos 6 cos®0+y cos O+(y2-1) y-cos B

equation (B8), after the indicated integration of the simple terms is
performed, can be written

o+ Dt 4o -G D1 -
< _> f 70059 (B9)

If the integrand of the first integral expression in equation (B9) is
grouped as 6 and (sin 6/7-cos 9)de, integration by parts ylelds

7

T
%k/n 8 sin 0 49 n|y+l| - %ljp 1n(y-cos 6)d9 (B10)
o

y-cos 6 o

Now

h1¢

% /W 1n(y-cos 6)de
Yo

L (|y|+HET)  for [yl 21 (L)
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The partial derivative with respect to 7y of the left-hand side of
equation (Bll) is zero for |7| < 1, This demonstrates that the integral
expression is independent of » and hence has a constant value for

|y| < 1. The constant is evaluated as 1In 2. Therefore

- 2. >
l4/\ﬂ 6 sin 6 | y+1| +1n 2 (] y|+>2-1) for |7| > 1
Tt -
y-cos 6 in|y+l]+in 2 for |y] <1
(B12)

The last integral expression in equation (B9) is evaluated as follows:

r —x 3
lF /72ltan—-
= tan for ]7| >1
2
T 7 .
;f a0 _ ¢ Jo ?
T _ 1
o 7708 ® 1 1 1-¥2 tan % 6+(1+y)
= T for |y| 1
Vl'72 1-y2 tan = 6-(1l+y)
- 2 —o J
Therefore
( A
L for y>1
72-1
" a6
lf —< =L for
L L y<-1 ) (B13)
T, Y-cos e Y21
0 for |[y|S1
\ Y

From equations (B12) and (B13) equation (B9) reduces to

% (372 + %)-(%2 + %> n 2 + <}2 + %) (| y|+r2-1) - % | 7| Jr2-1

K(y) = for ]y| >1
<é72 > <' > n 2 for |yl <
(B1L)

The second integral of equation (B6) evaluates simply as

T
%L/ﬂ (y-cos 0)%a0 = y2 + % (B15)
o}
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By means of equations (BS), (B7), (Blk4), and (B1l5), equation (B6) is

written
é“. s a. . 2
1(3;5,8) = 8° {K <_i_3 + K#) + .1_] In E} (B16)
B B 2

where K(éij/ﬁ) is given by equations (B5) and (BlL4). Equation (B16) can
be further simplified by applying the conditions for bodies of revolution
with S'(1) = 0. The terms of the equation resulting from substitution

of equation (B16) in equation (Bl) which are constant or are proportional
to &1 and gi3° will vanish as a result of the conditions imposed for

all values of &;: Dby equations (25) and (26) for zero area gradient at
the ends of a body of revolution. Therefore, equation (B16) can be written

<aiJ-2 + % 1§2> [1n(] &3 5|+ 81 32-B2)-1in B] - % |y 5| f1 252
I(815,8) = for |&jj] > B
0 for lﬁijl <B

(B17)

From figure 2 it can be seen that B is the dimensionless longitudinal
distance defined by the intersection of the Mach wave (Bd cos 6 = Bd

for 6 = Oo) with the axes of both bodies. Also, &ij is the dimension-
less longitudinal distance between pairs of points, one on each body, used
in the double summation of equation (Bl). Consequently, I(&ij,B) = O

for |51j| < B has the important physical interpretation that any parts
of a configuration which lie on or outside the Mach cones from the nose
and tail of the configuration do not contribute to the interference wave

drag.

Wing and tail-surface components of equivalent bodies of revolution
have coincident axes (4 = 0); therefore, the dimensionless zero-1lift
interference wave drag between such equivalent-body components can be
calculated by the present method with values of f(éij,O). The zero-1lift
interference wave drag between the actual components must, however, be
obtained from a graphical averaging process. Values of T(éij,o) are
calculated directly from equation (B2) with B = 0. Values of T(éij,ﬁ)
have been calculated for O < 833 £ 3.10 in increments of 0.01 and
0< B < 3.0 in intervals of 0.2 and are presented in table IV. A value
of &ij = 3.1 corresponds to a longitudinal separation of component cen-
ters of 1.1 half-component lengths of the largest component and should
be adequate for most practical configurations,



APPENDIX C

AN ANALYTICAL APPROXIMATION OF AIRFOIL-SECTION AND

PLAN-FORM THICKNESS DISTRIBUTIONS

The area distribution of a wing or tail surface depends upon the
thickness distribution of the plan form which, in turn, depends upon the
thickness distribution of the airfoil section. The plan-form area and
thickness distributions can not be expressed in analytical form unless
such an expression is available for the airfoil-section thickness distri-
bution., In some cases the airfoil-section thickness distribution is
available in analytical form; for example, that for the NACA four-digit-
series airfoil sections is given by a power series. In many other cases,
such as the NACA 6-series airfoil sections, the thickness distribution is
not available in analytical form; however, the thickness distribution is,
in general, accurately specified at many airfoil-section chord stations.
The slope of the airfoil-section thickness distribution is always known
for at least one chord station, usually at the chord station for maximum
thickness, where the slope of the thickness distribution is zero. In this
appendix a simple approximation of the airfoil-section thickness distri-
bution will be made which affords an analytical expression for the thick-
ness distribution from a knowledge of the thickness at specified chord
stations and the slope of the thickness distribution for at least one
chord station. With this information, an analytical expression for the
plan-form thickness distribution of wings and tail surfaces will also be
determined. The distributions will be determined in the dimensionless
coordinate system described in appendix A.

Airfoil-Section Thickness Distribution

The thickness distribution of an airfoil section is generally
specified at a sufficient number of chord stations that it can be approx-
imated quite accurately by a series of adjacent parabolic-arc segments of
continuous slope. Concerning zero-lift wave-drag calculations, errors
introduced into the calculation of 35(&), §'(t), or §"(&) by this approx-
imation are far less significanc than those inherent in the various
numerical calculation methods for the wave drag.
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Consider the dimensionless airfoil-section thickness distribution
and its derivatives shown in sketch (d). The thickness distribution is

Ta)

'@

Sketch (4d)
expressed analytically as
7(a) = fa) for -1<a<1l (c1)

where f(a) is a function of « which defines the shape of the thickness
distribution and o 1s the dimensionless chord station measured positive
and negative in the free-stream direction from the 50-percent chord as the
origin. It should be recalled that the chord station defined in this
manner is made dimensionless with respect to the half chord of the airfoil
section. The function f(a) can be determined analytically as a series

of adjacent parabolic-arc segments of continuous slope when the following
conditions are satisfied:

i, Each parabolic segment satisfies the given thickness at two
consecutive chord stations, aj and aq4;.
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ii. The slope of the thickness distribution is continuous and is
known for at least one chord station.

The function f(a) can be written for a parabolic arc through two
consecutive points, a4 and aj,;, such that

1(a) = ala-ag)Z+bla-aiyr ) +e(am-ai ) (c-aiir) for aj S o < @it
(c2)
also
' (a) = 2a(o=ai)+2b(a-ait1)+e[2a-(ai+aiir)] for oi £ a < ajsr
(c3)
and
"(a) = 2(a+b+c) for aj £ a < ajsr (ch)

with 7(aj), 7(oj41), and 7'(aj,;) known, the constants in equations (c2)
to (C4) can be determined as

2 - Toin) (c5)
(@i+1”11)

b = __IQELL_TE (c6)
(@i+1'“i)

Since T1'(a) is linear and T"(a) is constant over each segment of
parabolic arc, it is more convenient to express 7'(a) at each aof as

T (ai) = T (agq1)-(ogp1-05 )7 () (c8)

At each predetermined chord station, ai, of the actual airfoll section
t(a) = 7(ay) where 7(ai) is known, 7'(a) » T'(aq) vhere 7'(aj) is given
by equation (C8), but is known for at least one value of aj, and

"(a) = 1"(ay) where 7"(ai) is given by equation (ch).

To illustrate the procedure for finding v(a), 7'(a), and "(a)
consider a simple parabolic-arc airfoil section and an NACA 6XA00Y airfoil
section. For the parabolic-arc airfoil section the known conditions are
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iii. 7'(ayy,) =7'(0) =0

- = 1

iv., a ol

i+1
From conditiors i and iv in equation (C6) b = 0; from conditions ii and iv
in equation {C5) a = 1; and frcm conditions iii and iv and the fact that

a = 1 in equation (C7) ¢ = -2; hence, from equations (C2) to (CkL)

T(a) = 1-a2

' (o) = -2a

7" ()

-2
For the NACA AXAOOY airfoil section the known conditions are
i. 0.6<a<1l 7(a) is given for aj,i-af = 0.1
1(a) is linear, hence 1'(0.6) can be found
ii. -0.8 < a < 0.6 t(a) given for ay,,-ay = 0.1
iii. -0.95 < a £ -0.8 7(a) given for aq,,-aiy = 0.05
iv. 1< a < -0.95 7(a) given for aj,,-ay = 0.025

From condition i, 7(ai) is given and

o mlagyq)-Tlag)

Y. ) = C
(o) A 4104 (c9)
" (ai) = O
To continue from condition i, 7'(0.6) must be found and used with
condition ii. From equation (C9)
w1 (0.6) = LHTL0:8) 5 517 (2)-7(0.6)) (c10)

At o = 0.5, from condition ii and the result of eguation (ClO), a, b,

and c are found from equations (C5) to (C7). In equation (CT)

' (ajyy) = 7'(0.6). Next +"(0.5) is found from equation (ck). Then suffi-
cient information is available tc calculate 1'(0.5) from equation (C8).
With 71'(0.5) the above steps are repeated and conditions ii to iv are
used until T(-1), 7'(-1), and t"(-1) are determined.
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Wing Plan-Form Thickness Distribution

Consider those wings which satisfy the following conditions.

i. The boundaries of the wing are such that the plan form and the
spanwise variation of the local chord can be expressed analytically.

ii. The wing has the same basic airfoil section at all spanwise
stations; that is, only spanwise variations in thickness and/or thickness
ratio are allowed.

iii. The thickness distribution of the basic airfoil section can be
expressed analytically as described in the preceding part of this appendix,

iv. The spanwise variation of the thickness along lines of constant
percent chord can be expressed analytically.

Actually, condition ii can be relaxed to include wings with one basic
airfoil section out to a discontinuity in plan form, for example, a fence
or extended leading edge, and a different basic airfoil section from the
discontinuity out to the wing tip. In such cases each portion of the plan
form 1s treated as a separate entity.

Consider the one wing panel of a typical plan form shown by the solid
lines in sketch (e) in dimensionless coordinates. If the abcissa of any

Ko {

Iy \ (Kg, 1)
/"_/j/

Sketch (e)

point in the plan form is measured from the local 50-percent chord station
and this distance is divided by the half chord of the local airfoil sec-
tion, any point in the plan form, (&,n), can be expressed as a chord
station of the local dimensionless airfoil section. With the aid of
sketch (e) this is accomplished by the transformation

a(g,n) = (c11)
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where Ky 1s the tangent of the sweep angle of the 50-percent chord line
of the extended wing panel and &(n) is the local half chord. All points
in the plan form which yield the same value of o(&,n) define lines of
constant percent chord (see long dashed line in sketch (e)), and since

the basic airfoil section is the same at all spanwise stations, the dimen-
sionless thickness of the local dimensionless airfoil section is constant
along these lines. Therefore, the thickness at any point in the plan

form can be found as the product of the thickness at the proper chord
station of the basic airfoil section and a term which allows for the span-
wise variation of the thickness along lines of constant percent chord.

If ®&{n) represents the known analytical spanwise variation of the thick-
ness along lines of constant percent chord, an analytical expression for
the wing plan-form thickness distribution is

T(&,m) = o(n)rla(e,n)] (c12)

where t[w(t,n)] is a known analytical expression for the basic airfoil
section and a«f(t,n) is given by equation (C11).

Equation (Cl2) is applicable to all generalized wings which satisfy
conditions i to iv above. For instance, i1f the plan form is such that
the 50-percent chord line is nonlinear, equation (c12) is applicable when
equation (Cll) takes the more general form

E,n) = E-Kontf(n)
&(n)

a(

In this case f(n) describes the nonlinearity of the 50-percent chord
line.

Equations (Cll) and (Cl2) can be modified in a very simple manner
to yield the plan-form thickness distribution, and hence

~ b
S <g, B gg—, 6>

~ b
Sn <§, B c_z_, 9)

for sheared wing components of the equivalent bodies of revolution required
when calculating the zero-lift wave drag of an airplane-type configuration.
Consider the complete wing shown in figure 5. The traces in the

t,n plane of the intersection of the oblique planes and the E£,n plane
define an angle ¥ with the 1n axis such that

and
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~ - b
¥ = tan lB 59 cos 6
ol

Hence, the traces through the extended wing tips and the ¢ axis (see
lines XX and YY in fig. 5) define a longitudinal distance |B(by/co)cos 6].
Tn accordance with reference 5 each element of the upper (positive

n direction) wing panel is sheared a distance |p(by/cg)cos 6|n forward
and each element of the lower (negative 7 direction) wing panel is
sheared a distance |p(bo/co)cos 6|n rearward for 0 £ 6 < n/2 (see the
dashed lines in fig. 5). From figure 5 it can be seen that the tangent
of the sweep angle of the sheared 50-percent chord line of the upper and
lower extended wing panels can be defined, respectively, as

o’

Ky = Ko-B -% cos 6 (c13)
b
K, = Ko+B E% cos 6 (C1k)

The quantity K, rather than B and 6, can be used to define the shearing
of the wing panels. The upper and lower wing panels are related in a
simple manner by

Ky+Ky, = 2K, (C15)

It will be recalled that the tangent of the sweep angle of the 50-percent
chord of the extended wing panel is used in equation (C11) to define the
parameter o. Hence, if K, in equation (Cll) is replaced by K, the
plan-form thickness distribution of the wing panels of the various sheared
configurations can be written

T(é)n:K) = ®(n)T[a(§)ﬂ)K)] (Cl6)
where
. Ky
(E)U)K) 5(“) (c1T)

and K is defined by equaticns (C13) and (Clh).

In calculating the area distribution and derivatives of the area
distribution for the various sheared configurations, the above means of
identifying the sheared configurations permits the use of only one vari-
able, K, to define these distributions. This will be demonstrated by the
sample calculations of appendix D.
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The equations derived above for the dimensionless wing plan-form
thickness distributions are also applicable to tail surfaces when the
characteristic lengths co/E, bo/2, and to/2 for the tail surfaces are
used to obtain dimensionless coordinates in the x, y, and z directions,
respectively., For horizontal tail surfaces, equations (Cl3) and (Clhk)
are used with Opgp = 6y. For vertical tail surfaces, equation (Clk) is
used with By = 9w+ﬂ/2. The sheared configurations for vertical tail
surfaces are symmetrical in = rather than n/2.
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APPENDIX D

AN APPROXTMATE ANALYTTCAL METHOD FOR CALCULATING
AREA DISTRIBUTIONS AND THEIR DERIVATIVES FOR

SHEARED WINGS OR TAIL SURFACES

The analytical expressions which will be developed in this appendix
for calculating the area distribution, the first derivative of tae area
distribution, and the second derivative of the area distribution are
applicable to wings or tail surfaces which satisfy the following
conditions:

i. The spanwise variation of the 50-percent chord line is known
analytically.

ii. The boundaries of the plan form, the spanwise variation of the
local chord, and that of the thickness along lines of constant percent
chord can be expressed analytically.

iii., The same airfoil section is employed at all spanwise statioms.

iv. The thickness of the airfoil section is known at a sufficient
number of chord stations to permit an analytical approximation of the
airfoil-section thickness distribution in the manner described in
appendix C,

Consider the typical half plan form for wings and tail surfaces
shown in dimensionless coordinates in figure 6. The figure represents
all trapezoidal-type half plan forms with taper ratio, O £ AN < 1, The
general form of the equations which will be developed for the various
distributions is also applicable to the case for A = 1. The details
of the solutions for this case, however, are simpler than those for
0<£ A< 1l. The differences will be pointed cut later when some sample
calculations are presented., The solid lines in figure 6 represent any
half plan form with O < A < 1, and the short dashed lines represent the
extended half plan form, It should be noted the actual half plan form
and the extended half plan form are identical for A = 0, It should also
be noted that all equations are based upon extended half plan form.

EXACT EQUATIONS FOR THE DISTRIBUTIONS

The dimensionless area distribution of any half plan form and its
sheared configurations is given by
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Ny (€,K)
3(8,K) f r(&,m,K)an (p1)
nl(é,K)

Differertiation of eguation (Dl) with respect to ¢ yields the first
derivative of the area distribution of the half plan form

. W (EK) 5 e, k) an, dn
3 (E,K) = ) anyr(g,n ,K) =2 - T(&,m, ,K) =+
d£;<g,K) ot a A (D2)

Differentiation of equation (D2) with respect to ¢ yields the second
derivative of area distribution of the half plan form

ny(8:K) 2 dr(e,n.,K) d dr(e,n ,K) d
5 (¢ ) =k/“ k) T(E;?,K) an + T(&,n,,K) dny, . T(&,m,,K) dny .
n, (£,K) ok ot de g at
d®n, ot(g,ny,K) dn,  ar(e,n;,K) dn
1K u A 1. 5Ty 1
w(¢ "y ) aee ot de at at
d2n
PRI —L D
7(&,7,,K) e (D3)

In equations (D1) to (D3) 7(¢,n,K) is the plan-form thickness distribution
of any of the sheared configurations and is given by

T(E,U:K) = Q(U)T[&(gyniK)] (016)

where @&(n) is the known analytical spanwise variation of the thickness
along lines of constant-percent chord, 7{a(&,n,K)] is the local airfoil-
section dimensionless thickness at a given percent chord, «(t,n,K) defines
lines of constant-percent chord for any point (g,n) in the plan form and
is given by

£-Kn

() (c17)

@(gyn;K) =

and K is given by equation (C13) or (Clk). The upper and lower limits
of integration, n, (&,K) and nz(g,K), respectively, are the boundaries of

the half plan form. Also Or(&,7m,K)/0t is continuous between limits of
integration.

To evaluate equations (D1) to (D3) it is convenient to make a change
of variable from 1 to a 1in accordance with eguation (C17). 1In this
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manner one can subsequently make use of the fact that 7" (o) is constant
over each interval of parabelic arc which approximates the airfoil-section
thickness distribution (see appendix C). With this change of variable

let

a = a(t,n,K) (Dk)
nu = nu(g;K) ( )

D5
nl = ﬂZ(E,K)

and from equation (Cl7) the new lower and upper limits of integration
become, respectively,

@(E;UZ,K)

]

a9

(D6)

Uy @(g)nu:K)

The change of variable for each term of equations (D1) to (D3) which
contains a function of 7(&,7,K) can be made by means of equations (Cl6),
(c17), and (Di) and various combinations of their partial and total
derivatives. Thus,

T(&,n,K) = e(n)r(a) (D7)
BT(iéj,K) = o(n)7' () %% (D8)
3% (¢, 1,K) Y
SR a(ar(a) (&) (p9)
T oty (e) &+ [ eyt @) E| 0 010)

Exact Equation for 8(&,K)

Substituting equations (D7) in equation (Dl) and making the change
of variable from 7 to a

I
36,6) = [ sla,t001(e) o (p11)

@

Grouping the integrand of equation (D11) as 7(a) and
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d
o(a, t,K) 52 do

integration by parts yields

~ e “u
3(6,8) = [r@ (8,015 - [ 7@k, K (p12)
a
where Z
¥(ay£,K) =f¢>(a,e,K) 2 o (D13)
da
After integration by parts of the second term in equation (p12)
- et} %
S(Q;K) = [T(@)W(@:gzK)'T‘(@)F(@)EJK)]@Z +f T"(@)F(@)E;K)dﬂ'
o}
Z (D1k)
where
F<O“J§}K) = /’\W(@)g;K)da’ (Dl5)

Exact Equation for S'(&,K)

Substituting equation (D8) and equation (D7), evaluated at n, and 7,
in equation (D2) and making the change of variable from n to a ylelds

Qg
~ d dn dn
3500 = [ 8,807 (@) 2 8 asso(n,)r(o) G - 8(n)7(e)
% (D16)
Grouping the integrand of equation (D16) as 7'(a) and
oo 4N
(D(CL, E,,K) S-é- aa da
integration by parts yields .
~ oy v " dny,
8r(gx) = [r'(a)la,t,K) ], - " (@)0(a, £,K)da+@ (0 )7 (o) T
91
d
o(n;)7(ay) Qﬁ% (D17)
where
d
-Q<G"§;K) :f(D(CL,E,,K) g%a'g: da (Dl8)
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Exact Equation for §&"(&,K)

Substituting equations (D9), and equations (D7), (D8), and (D10),
evaluated at 7, and n,, in equation (D3), making the change of variable

from n to a and collectlng the terms

Ay

" _ 1" 6C('U. a@u dnu 1 dnu
3(2,) -[Z (et )+ (2 5 S 0l ) (o)

[M <d_”u. + o(n,) nu] T(ay) - (2 %, 3 dn1>

dn,, ag de= ok anl dg

dao
o7 () - | d(n”; (3 ) + o(n,) ';]—r(w (D19)

where

Ala,€,K) = ¢(a,t,K) < > (D20)

Limits of Integration

The limits of integration in the equations for the various distribu-
tions depend upon the plan form being considered. TFor practical half plan
forms only four limits of integration need be considered - the chord on
the ¢ axis, the leading edge, the trailing edge, and the finite tip for
half plan forms with O < A £ 1. It should be noted that integration over
the half plan form in the 1 direction is transformed, by equation (ClT),
to an integration over the basic airfoil section in the a (or ¢) direc-
tion. Furthermore, the limits of a integration never exceed *1 regard-
less of the value of E. The limits of «a integration as determined from
figure 6 and equation (Cl7) for the actual and extended half plan forms
are tabulated below:
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ILimits of « dintegration
Limit, . .
Value Type of limit Wh licabl
location yp mi ere applicable
£ axis 3 Lower -1 <t < All K
Leading Upper -l<E<K K> -1
edge -1
Lower KL e< -1 K< -1
Upper (actual
- ‘ £-Kn, | half plan form)
Finite tlp - t (Knt_-)\) S § S. (Knt+)\) All X
(0<A<1) | &n) Lower
(extended tip)
Trailing 1 Upper KL <1 K <1
edge Lower 1<¢e<K K21

Presented in figures 7(a) and 7(b) for half plan forms with 0 < A < 1
and XA = 0, respectively, are the regions and limits of « integration
for all possible values of K. It should be noted that the distributions
of the actual half plan forms with O < A< 1 (fig. 7(a)) are found by
subtracting from the distributions of the extended half plan forms, for
values of (Knt-%) < &< (Knt+%), the distributions for the extended tip
defined by Ny < n <1, It is for this reason that the half plan forms

are made dimensionless with respect to the extended half plan form. Note
also that the upper limit of integration is always constant (either -1
or 1) and the eguations for the distributions can be expressed as a func-
tion of the lower limit. More important, however, this treatment of the
limits of integration permits the calculation of the distributions for
the half plan forms with 0 < A < 1 from a very simple manipulation of the
basic data for the extended half plan forms. This procedure will be
explained in detail in the sample calculations. Similarly, in the case
of an airplane-type configuration, the distributions of the exposed half
plan forms can be conveniently found from the basic data of the extended
half plan forms.

It now remains to investigate the effect of the limits of integration
on the terms in equations for the distributions (egs. (Dik), (D17), and
(D19)) which are evaluated at the limits., Only the terms in these equa-
tions which contain () and/or dn/dt, evaluated at the limits, will
vanish when the values of & are such that the limits of integration of
the half plan form are

i, Along the ¢ axis, in which case dnz/dg = 0,

ii. v(-1) = 0 or

(o) =

Along the leading edge, in which case T(a,) =

T(-l) = 0,
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iii, Along the finite tip, in which case dnu/dg = 0 or dnl/dg =0
when 7. 1is the lower limit of the extended half plan form.

iv, Along the trailing edge if the basic airfoil section has or
is assumed to have zero thickness at the trailing edge, in which case
T(ay) = (1) = 0 or t{a;) = 7(1) = 0.

APPROXIMATE EQUATIONS FOR THE DISTRIBUTIONS

The approximate equations for S(&,K), §'(¢,K), and §"(&,K) will be
determined by examining equations (D14), (D17), and (D19), respectively,
in the light of the approximation of the airfoil-section thickness dis-
tribution made in appendix C. It will be noted that each of equa-
tions (D14), (D17), and (D19) contains a term of the form

Qu
T"(a)f(a, £,K)da (D21)
ay

For the approximation made in appendix C, 7"(a) = 7"(ay) = a constant for
aj £ o S ajy, (see sketch (d)). Therefore, if the integration in expres-
sion (D21) is performed as the sum of integrations over the intervals
aiy1-0i, T"(ai) can be taken outside the integral sign for each interval.
The sum of the individual integrations which make up the integration of
the expression (D21) can have two forms, depending on whether a is
less than or greater than 3. The form of the integration for these

two cases can be determined with the aid of figure 8 which defines the
stepwise limits and direction of o integration. Case I, for which

ay < a; applies, regardless of plan form, when ¢ < K; and Case II, for
which oy > ay; applies, regardless of plan form, when ¢ > K.

With the aid of figure 8 and the approximation in appendix C, the
expression (D21) can be written

ay %i(a, )
U/“ " (a)f(a,t,K)da = T"(@Z)k/ﬁ K fa,&,K)da +

oy ay
U+a aq-1
T"(ai_l)L/\ fla,t,K)da +
i=1(a;y) o i
T"(GU-l)L/n f(a,t,K)da for Case I
u

(D22)

and
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any i (g )+1
Jf " (a)f(a,t,K)da = T"(az)u/‘ fla,t,K)da +
) @y
U-1 Oif1
Z T”(@i)f f(a‘;E:K)d@ +
1=1(ay )+1 o
ay
T"(qU)k/P fa,t,K)do for Case II
Ly

(p23)

If «a; and a; can be made to coincide with a4_, and oy for Case I and
with i 4y and qpp for Case II, the first and last terms of equations (D22)
and (D23) will vanish. This can be accomplished for the first terms by
choosing £ such that «; always corresponds to a value of a3 for

which the airfoil-section thickness is specified, and for the last terms

by always integrating to the leading or trailing of the extended half

plan form (i.e., ay = oy = F¥1). As mentioned earlier, this is accomplished
for half plan forms with O < A < 1 by subtracting the distributions of

the extended tip from those for the extended half plan forms,

The approximate equations for &(&,K), 5'(&,K), and §"(£,K) are

found by substituting the form of equations (D22) and (D23), with the
proper integrand, in the integral term of the exact equation for each
distribution. For 5(¢,K), equation (D14), f(a,t,K) = I'(a,t,K). For
S'(¢,K), equation (D17), f(a,t,K) = Q(a,&,K). For 8"(t,K), equation (D19),
f(a,t,K) = A(a,t,K). The terms of equations (D14), (D17), and (D19) which
are evaluated at the limits of integration are treated in the same manner
as discussed in connection with the exact equations for the distributions.

SAMPLE CALCULATIONS

Complete Half Plan Forms, O S A< 1

The area distribution, the first derivative of the area distribution,
and the second derivative of the area distribution will be calculated for
the families of half plan forms shown in figure 7. The airfoil secticns
will be considered to have a linear spanwise variation in thickness along
lines of constant percent chord, and, for simplicity, will be considered
to have zerc thickness at the trailing edge.® The spanwise variation of
the half chord is given by

SGenerally, the thickness at the trailing edge of the airfoil section
is sufficiently small that it can be considered to be zero without intro-
ducing any appreciable error in the distributions. Any small error which
might be introduced, however, has a negligible effect upon the zero-lift
wave-drag calculations,
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&(n) = 1-1 (D2k)
From equations (Cl7) and (D24)
o = £X0 (D25)
1-n
and
n=1- -g-% (D26)

The linear spanwise variation of the thickness along lines of constant
percent chord is

o(n) = 1-Cq for 0 <1 (D27)
where

c=218  for 0< A< (D28)

In equation (D28) o is the ratio of the airfoil-section thickness at the
finite tip to that at the vertical plane of symmetry, and A 1is the taper
ratioc of the actual half plan form being considered. For the spanwise
thickness variation, C 1s normally defined by only the numerator of equa-
tion (D28). In the present case, however, the factor l/l-% is required
in order that equation (D27) be valid for 0 £ n < 1. This factor is the
ratic of the extended semispan, bo/2, to that of the actual semispan, b/2.
With C defined as in equation (D28), for half plan forms with 0 < A < 1,
all or a portion of the spanwise thickness distribution of the extended
half plan form may be negative. This imposes no serious conseguences
since the distributions for O < A < 1 are obtained by subtracting the
contributions for mn < m < 1 from the distributions for O = 1 < 1.

For extended half plan forms it is always possible to calculate the
distribution at values of £ for which the lower limit of integration
corresponds to values of a4 for which the airfoil-section thickness is
specified, and the upper limit of integration is always the leading or
trailing edge. Hence, for extended half plan forms the first and last
terms of equations (D22) and (D23) vanish. With this information plus
conditions i to iv previously discussed in comnection with the limits of
integration, the approximate equations from which the distributions can
be calculated for half plan forms with 0 £ A < 1 are
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3(6,K) ~ [r(a)v(a, &)= ()7 (e, £,K)]g +

2 ai -1
}; T"(@i_l)k/ﬁ r{a,t,K)da for Case T
1=1(a;) !
: (p29)
I-1 af41
}j T"(ai)b/\ I'(a,t,K)da for Case II
\i=i(ay)+1 a1
31 (g,K) = [T'(a)m,g,mj; -
(& -1 )
E: T"(@i-l)k/h (o, £,K)da for Case I
i=i(CLZ> i
4 » (D30)
i-1 i+
z 7" (g ) (o, &,K)da for Case IT
Ki=i((lz)+l &1 J/
( 2 S Y R
}: T"(ai-l)\jp Ala, €,K)da for Case I
< 1=1(ag) i
S"(&,K) ~( > +
12 Tita
;{: T"(@i)k/\ Ala,&,K)da for Case II
Li:i(mz)+1 “1 /
duy Oy dn#) dny,
2 ! —_— -
St + aﬂu It ¢(nu)T (ay) 3t
Sy duy dmy ' dny
23t oy A o) ) (b31)

2

Sample calculation of §(&,K).- For half plan forms with O < A < 1,
first consider the extended half plan form and make a change of variable
in equation (D27) by using equation (D26), hence

o(a,t,K) = (1-C)+C §§§ - | “,(932)

From a differentiation of equation {D26) with' respect”to a
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dn _ _&-K

= " hx)? (D33)

Substituting equations (D32) and (D33) in (D13) and performing the
indicated integration

Ve, £,K) = -(1C) )—( ) (D34)

Substituting equation (D34) in equation (D15) and performing the indicated
integration

2
Mo, 6,) = -(10) (eK)imak] + § BV (035)

Substituting equation (D35) in the second term (for Case T) or
equation (D29)

2 ai-1

Y ) [ K
i=i(ay) “i

2
= -(1-C)(&-K) Z " (aq 1) (@i 1K) (in]a; o, -K]-1)-
i=i(a1)
2
(@i-K)(anai-K|—l)] + % (g-K)2 }: T"(&i—l)(lnlai_l-K|-Zn|ai-K|)
i=1(ay)

for Case I  (D36)

Each of the summations in equation (D36) is very large for a; close to
the value of K and infinite for a; = K. To avoid this singularity,

it is therefore desirable to multiply and divide both terms of the right-
hand side of equation (D36) by «;-K. Furthermore, since the uppermost
limit of the stepwise integration (ayy) is -1 along the leading edge of
the half plan form, equation (D36) can be written as a function of only
the lower limit, a;, and K. Thus

= -1

}Z 'T"(ai-l)b/w ra,&,K)da = -(1-C) é;ﬁ;)-AI(@z:K) +

i=i(gz) i

2
% jtf;) Br(ay,K) for Case I

(D37)
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where
2
AI(@l;K) = (@Z'K) T”(@i-l)[(@i-l‘K)(znIai-l'Kl'l) -
i=i(a;)
(ai-K)(in|ag-K|-1)] for Case I (D38)
and
2
By(ay,K) = (&Z—K)z E: T"(@i_l)(2n|ai_l-KI-anai-KI)
i=i(ay) for Case T  (D39)

Similarly, since = 1 along the trailing edge,
’ ag =

1- CL1+1 X
}: al)L/\ a £, K)do = -(1-C) (5 K> AII(al,K) +
11 ()42
< > Br7(a;,K for Case II
(D4O)
where
I-1
Arz(ag,K) = (a7-K) }: T (aq) [(agyyK)(n fog g, K[-1) -
1=i(ay )41
(a1K)(in|ai-K|-1) ] for Case II (D41)
and
I-1
Bry(a;,K) = (aZ-K)g E: T"(ai)(ln|ai+l-K‘—anai-Kl)
1=i(ay )42 for Case II  (Dhk2)

Substituting equations (D34), (D35), (D37), and (DLO) in equation (D29)
an expression for the area distribution of the extended half plan form
is obtained as

2
B(e.K) = (1-C) ( ) [0y ,K)-Daty ,K) +g<§—KK By K )4F (2 ,K) ]
CLZ-
(D43)
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where
ey, ) = (o) - (Z ) rlaa) Al 0 (D)
D(ay,K) = (ag-K)[v'(a;)in]a; K| -7" () in]ay K| ] (DL5)
Bay K) = (o) - <§ij§>27(%)+3<az,x) (Dt6)
(oK) = (8 [ () -« (B2) o (a)] (D47)

The left-hand side of equations (DhL) to (DL7) is correctly given as a
function of only a; and K even though ay, T(ay), and 7'(ay) appear in
the right-hand side of the equations. For the extended half plan form it
will be recalled that o = ay is always 71, 7(ay,) (included for the
general case) is zero along the leading edge but may not be zero along
the trailing edge of the half plan form, and T'(mu) is one constant value
along the leading edge and another constant value along the trailing edge
of the half plan form, For these sample calculations, it will be recalled
that T(oy) has been assumed zero along the trailing edge; consequently,
the term containing t(ay) in equations (D44) and (DL6) vanishes. For
Case I and Case IT A(az,K) and B(a;,K) are given by equations (D38) and
(D39) and equations (D41) and (D42), respectively.

To evaluate equation (D43) it will be found convenient to calculate
the values of A(aj,K) through F(a;,K) in tabular form for all values of
K of interest and for all values of oy corresponding to values of
-1 S af S 1 for which the basic airfoil-section thickness distribution
is given. Then, depending upon the value of &, a; 1is obtained from the
table on page 53 and equation (DL43) is evaluated with the aid of the
tabulated values of A(a;,K) through F(aj,K).

Equation (D43) is also applicable to half plan forms with A = 0, in
which case the actual and extended half plan forms are identical.

Equation (D43) is applicable to all geometrically similar extended
half plan forms. One such geometrically similar half plan form is the
extended tip of the extended half plan form defined by Ny S 1S 1. Hence,
the area distribution of the extended tip can be easily found if, . in
equation (D43), a; of. the extended-tip half plan form 1s taken a
-of the actual half plen form. Then &§(¢,K) for the extended tipgecomes

. 3 N

-

-
«
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2
(1-C) <jt-—K— [C(ag,K)-Dlag,K) ] + g(%) [E (g, K)+F (g ,K)]

8(e,x) = for (Kng-A) S & < (Kng+h)

Equation (DA43) for &2 (Knti%)
(DL8)

If a happens to correspond to values of a4 for which the airfoil-
section thickness is given, C(a;,K) through F(a;,K) have previously been
calculated in finding 8(¢&,K) for the extended half plan form. Otherwise,
these gquantities can be obtained from individual or combined plots of the
tabulated values of C(a;,K) through F(a,,K) versus their arguments; that
is, the values of these guantities are read from the plots at values of

ag obtained by letting «; = at. Hence, the area distribution of the
half plan forms with O < A < 1 is given by the difference between equa-
tion (D43) for all values of ¢ and equation (D48) for

(Kn-N) < & < (Kn +N) .

Sample calculations of S'(¢,K).- Again the extended half plan forms
will De considered Tirst. ALL the terms of equation (D18) except da/ Ok
have been found in terms of a, &, and K in the sample calculation of
3(e,K). This term is evaluated from egquations (D25) and (D26) as

dao _ aK (Dk9)

Substituting equations (D32), (D33), and (D49) in equation (D18) and
performing the indicated integration yields

Q(a,t,K) = (1-C)in|a-K|-C <§§§ (D50)

From a comparison of equations (D35) and (D50) it can be easily determined
from an inspection of equations (D36) to (D39) that by substituting equa-
tion (D50) in the second term, for Case I, of equation (D30) one can obtain
2 ai-1
1 1
E: T'(ai_l)Jf Qa,t,K)da = (1-C) s AI(al,K)—C

. x -
i=i(ay) et

£-K

Z_~_;;;§ B1(a,K)
ay -

for Case I  (D51)

and similarly
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I-1 @i

Z " (as) a(a,&,K)da = (1-C) == Ary(a; ) -
. oy l
i=i(ay)+2

X
¢ —=ZE_ Brr(a;,K)  for Case II
(a7 -K)

(D52)

where A(a;,K) and B(aj,K) are given for Cases I and IT by equations (D38)
and (D39) and equations (D4l) and (D42), respectively. Substituting
equations (D50), (D51), and (D52) in equation (D30) an expression for the
first derivative of the area distribution of the extended half plan form
is obtained as

£-K

SY(E:K) = "'(l C) —— [A(QI;K)*‘D(@ZJK)]*’C W

al K [B(ay ,K)+F(ag,K)]

(D53)

As in the case of the area distribution, §'(§,K) for the extended half
plan form (actual half plan form for A = O) is obtained from equa-

tion (D53) by using the proper value of a3 ©obtained from the table on
page 53 for each value of ¢ for which B8'(&,K) is calculated. Values
of A(ay,K), B(a;,K), D(a;,K), and F(a;,K) are obtained from the previous
calculations of S(&,K). For the extended-tip half plan form 3'(&,K) is
obtained by following the same procedure outlined in finding §(¢, K)

That is, in the region for which (Kn -A) £ e < (Knt+%) @; 1in equa-
tion (D53) is replaced by at, the values of A(w;,K), D(a;,K), and
F(aZ,K) are obtained from the aforementioned tabulated values, or plots,
by letting «; = a, and the resulting values of s'(g K) are subtracted
from those of the extended half plan form at the proper values of E&.
Obviously, for & 2 (Knti%), §'(&,K) for the extended tip is given by
equation (D53).

Sample calculation of &"(¢,K).~- For the extended half plan forms,

substituting equations (D32), (D33), and (D49) in equation (D20) yields
the function

- iC, C_
A, €,K) = EK T oK (D54)
Using equation (D5L), the first term of equation (D31) becomes
£ [T (au)=r ()] + = BlapK) (p55)

where B(aj,K) for Cases T and IT is given, respectively, by
equations (D39) and (Dk2).
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To evaluate the second and third terms of equation (D31) consider
the equations of the leading and trailing edges of the extended half plan
forms. In terms of both 17 and « variables

N = ST (D56)
and
a =7l (D5T)

The upper and lower signs of the * sign in equations (D56) and (D57) are
used with the leading and trailing edges, respectively. First consider
the evaluation of the second term of equation (D31) when the leading or
trailing edge is the upper limit of integration, From equation (D49),
evaluated at ay, and equation (D57)

Sy _ el (D58)

Since Oay/om, = dwy/dn, = 1/(dn,/day,), from equation (D33), evaluated
at ay, and equation (D57)

dang  (K#1)2
= (D59)
<IN K-¢
From a differentiation of equation (D56) with respect to ¢
dmy 1
= DEQ
e Ki (D60)
From equation (D32), evaluated at oy, and equation (D57)
- K-¢
@(nu) = (1-C)+C 3T (D61)

Using equations (D58) to (D6l) one obtains for the second term (upper
limit) of equation (D31)

3t (o) | (CE-K)F(1-C
- [( £ K11F )} (D62)

A general expression identical to that of (D62) is similarly obtained for
the last term (lower limit) of equation (D31).

For the extended half plan forms §"(&,K) is found by properly
combining expressions (D55) and (D62) (and its counterpart for the lower
limit) for certain ranges of the value of E. Regardless of the value
of X, for -1 < £ < 1, the last term of equation (D31) vanishes, because
dnz/dg = 0 for these values of E. For |K| > 1, and for Ig] > 1, when
the leading edge of the extended half plan form is the lower limit, the
trailing edge is the upper limit of integraticn and vice versa. There-
fore, for the extended half plan form (actual half plan form A = O)
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)

C 1-C
EZ:K'B(QZ:K)‘ X 7' (ay)

T@e2) (1-c)43(ctx)]
[ (K1) (£-K) } (o) +

for -1 &< 1) (D63a)
§"<§:K) =< >

(2) (1-0):3(08 1) | 11 ()4 S B(oy ) -
[ (K1) (E-K) ] (an )+ o K B(ay,K)
(K22) (1-C)+3(CE-K) | vy, .
d (K¥1)(&-K) ] (a7) fo I§|>1J (D63Db)

where the upper of the double signs is employed when the leading edge of
the extended half plan form is the upper limit of integration and the
lower sign is used when the trailing edge is the upper limit. It should
be noted that equation (D63b) is constant for € = 1 (constant airfoil-
section thickness ratio in the spanwise direction).

To calculate S"(&,K) for the extended tip half plan form, the same
procedure described in finding S(&,K) and 3'(¢,K) is employed. Again,
a; 1is replaced by ot for the actual half plan form in equation (D63a)
for values of (Kni-A) £ & < (Kny+A) and for ¢ 2 (Kng*A) equation (D63b)
is used. The resulting &"(¢,K) is subtracted from that of the extended
half plan form.

If the half plan forms considered previously have a more general
airfoil section such that the airfoil-section thickness is not zero at
the trailing edge, equations (D4L4) and (Dh6) are valid as shown, but for
the values of & for which the trailing edge of the half plan forms is
a limit of integration, the terms of equations (D17) and (D19) which were
omitted in the above calculations must be evaluated.

7 Complete Half Plan Forms, A = 1

For the special case of half
plan forms with A = 1, the extended
half plan form is semi-infinite and
a different definition of K and
different equations for the bound-
aries of the half plan form are
needed. As noted in appendix A, the
spanwise coordinate of half plan

Sketch (f) forms with A = 1 is made dimension-

less with respect to the actual semi-

span, b/2, Hence the dimensionless half plan form for A = 1 is defined
as shown in sketch (f). With the half plan form so defined,

Tronsformation :
La=é-Kkn

-1 o]
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C = 1l-c for AN =1

and the equations for the distributlicons derived above are, in general,
applicable for A = 1. However, for values of ¢ in the region of the
finite tip, (K-1) < ¢ < (K+1), the value of the upper limit defined by
the a transformation noted in sketch (f) must be used in equations (Dii)
to (D47), that is,

o = E-Knp = E-K

Furthermore, unless the values of £ 1in this region are so chosen that
ay corresponds to the values of «j for which the airfoil-section
thickness is given, the last term of equations (D22) and (D23) will not
vanish and must be evaluated.

Exposed Half Plan Forms

In calculating the distributions of the exposed half plan forms of
airplane-type configurations it is convenient to first calculate the dis-
tributions of the extended half plan forms. This provides an accurate
determination of plots of A{ay,K) through F(w;,K). If Ny = nB(g)
defines the body plan form, integrals of the type

Gy =F1

@Z=a(nB)

for the exposed portion of the extended half plan form can be evaluated

in the manner described above for calculating the distributions of the

half plan forms with O < A < 1. For values of ¢ at which the distribu-
tions may be desired, it is unlikely that a(nB) will correspond to values
of aj for which the airfoil-section thickness is given. Hence, values

of A(a;,K) through F(a;,K) are obtained from plots of these quantities

by letting a; = a(nB). Furthermore, for values of £ 1in the region of
the juncture of the half plan form and body, the terms containing

dn, /dt which were omitted above in finding S'(¢,K) and §"(¢,K) (see

eqs (D17) and (D19), respectively) must be evaluated since, generally,

for practical configurations, 4 /dg % 0. If the local values of dnB/dg
are small enough to permit the approx1matlon dnB/dg 0, it will be

found convenient to treat the exposed extended half plan form as a complete
extended half plan form and use equations (D29) to (D31). In so doing,
however, care must be exercised in evaluating kg, ky, kz, Sp, and C and
in properly shifting the upper (positive 17 direction) and lower (negative
M direction) sheared half plan forms when combining their distributions

to calculate the zero-1ift interference wave drag between the sheared

half plan forms.
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The approximate distribution equations in tne sample calculations
were derived by integrating the basic equations with respect to o in
order to take advantage of the approximation made in appendix C for air-
foil sections with nonanalytic thickness distributions. Although these
approximate equations may be used for half plan forms for which the
airfoil-section thickness distribution is given by a simple anslytical
expression, it is found more convenient, in such cases, to perform the
integration of the basic distribution equations in terms of 7 as indi-
cated by equations (D1) to (D3). For example, the thickness distribution
of a parabolic-arc airfoil section, as shown in appendix C, is

T(a) = 1-a2 for -1<asl

From equation (Cl17)
2
Tla(t,n,K)] =1 - <§:Eﬂ
()

Therefore, from equation (D7)

T(&,m,K) = o(n) [l i %(_%)2]

Hence, with the spanwise variation of the thickness, ¢(n), and the
boundary of the half plan form specified (with the boundaries known, the
spanwise variation of the half chord, &(n), is automatically known) all
the terms in equations (D1l) to (D3) can be evaluated exactly. Furthermore,
if dn/dg for the boundary is continuous, as in the case of an elliptic
plan-form wing, the calculation of the distributions is greatly simplified
by virtue of the fact that a single equation specifies the limits of
integration.
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APPENDIX E

A PROCEDURE FOR CALCULATING LIFT DISTRIBUTIONS

FOR SHEARED WINGS

The lifting-pressure distribution supported by a wing can be defined
as the sum of several superposed distributions. These superposed lifting-
pressure distributions can be written in coefficient form as

N M
Cp(x,y) = Zanan,meym (E1)
n=0 m=0

where x and y are the conventional rectangular coordinates. The constant
coefficients ap and by are determined by specified boundary conditions,
such as 1lift, pitching moment, and desired properties of the 1lift distri-
bution. In reference 9 a method was developed, independent of thickness,
for warping delta and arrow plan-form wings with subsonic leading edges

and supersonic trailing edges to support a desired 1ift distribution at

0° angle of attack. The method employed a particular form of equation (E1)
which was considered adequate to determine the lifting-pressure distribu-
tion of this specialized group of wings with acceptable accuracy. In terms
of the dimensionless coordinates defined in appendix A of this report,

this particular form of equation (E1) can be written

Bple,n) = 8g + K%%I £+B, [n]+Ban2 (E2)
The longitudinal 1ift distribution is then easily obtained from
N, (&)
te) - [ leman (83)
n, (&)

where ﬁp(g,n) is given by equation (E2), and nl(g) and nu(g) are
boundaries of the dimensionless plan form.

Just as in the case of the Ui

area distribution, the 1lift dis- k- 7
tribution can be conveniently
determined in terms of that for
the sheared wings of each equiv-
alent body of revolution, The
local lifting pressure at any
point in the plan form is inde-
pendent of the shearing process.
Therefore, with the aid of
sketch (g) it is clear that the Sketch (g)
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local pressure at any point in the sheared plan form, K, can be related
to the same local pressure at the corresponding point in the original
plan form, Ky, by the following transformation

Eop = E-(K-Ko)n (E4)

where the subscript op denotes the original plan form. Using equa-
tion (E4) in equation (E2) the distribution of the lifting-pressure
coefficient for sheared wings can be written

~ - 5.1 o K'Ko ~ o~ =
CplE,mK) = 8o + g=7 £ + (%1 plows) a%) In {+52n (25)

The integral of equation (E5) over the plan form in the 17 direction
results in the frontal projection of the force distribution intercepted
on the given wing by the parallel oblique planes. The direction of the
frontal projection of the net force is perpendicular to the oblique

planes (see sketch (a)). With the subscript p used to denote this fact,
integration of equation (E5) yields

" 3 1 /> KK 4 N LR
Lp(&,X) = [(éo t T §> Inl + 5-(%1 ooy a%) o+ 3 ba|n] ]
T (e,K)
(E6)

The values of the limits of integration for the sheared wings are deter-
mined in the same manner described in appendix D for area distributions
of sheared wings. However, in equation (E6) the limits are expressed in
terms of the n integration rather than the o integration. Finally,
it is the component of the force distribution in the ¢ direction (i.e.,
the 1ift distribution) which is employed in equation (2) in this case.
Hence, from sketch (a) it is clear that the 1lift in the § direction is

T(e,K)

il

I,(&,K)sin 6 (ET)
and
Lr(e,K) = Ip'(&,K)sin 6 (E8)

Upon substitution of equation (E8) in the dimensionless form of
equation (2) of this report, it is clear that the total wave drag is most
conveniently computed by separating the effects on the wave drag of
thickness and 1lift, because only the lifting effect is affected by sin 6.
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APPENDIX F

SPECTAL COMPUTING PROCEDURE FOR THE METHOD

OF REFERENCE 3

If equation (3) of this report is integrated by parts, the zero-lift
wave drag of any slender configuration can be expressed as a function of
the first derivative of the area distribution of the configuration,
s'(x,p,8). From an expansion of st(x,B8,0) in a Fourier sine series,
the infinite series form of the supersonic area rule was developed in
reference 2 for calculating zero-lift wave drag for slender-body thin-
wing combinations; that is,

2n X
D(R) = %f Zn[An(B;Q)]sz (F1)
o n=1
where
° 3 6
hn(,0) = 2 [ 088 sinao)ag (v2)
-1
and
< - 11(6,9)2+2(B,9) cos @ (F3)

The zero-lift wave drag of the equivalent bodies of revolution is given,

of course, by
s3]

qznmnw,e)]g (F4)

n=1

D(BJG) =

Eag B

The use of the Fourier series requires that application of the supersonic
area rule be restricted to configurations for which each equivalent body
of revolution satisfies the condition given by eguation (L),

S'("llyﬁye) = S'(Z)B;9> =0

In reference 3 the Tchebichef form of harmonic analysis was employed to
evaluate equaticn (F2). This permits zero-1ift wave-drag calculations
by the supersonic area rule from a knowledge of the area distribution of
a configuraticn, S(x,2,8).
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The electronic-machine computing equipment at Ames is programed to
evaluate the Fourier sine series coefficients and compute the total zero-
lift wave drag of an equivalent body from the values of the area distri-
bution determined by a telereader at 201 points equally spaced over the
total length of an equivalent body. Eguation (FL4) requires an infinite
number of terms of the series. However, the practical application of
equation (FL4) requires that the series be terminated at some value of n,
say N, for which the series will converge. The existing machine-
computing program is set up to provide zero-1ift wave-drag solutions for
N up to and including 49. In reference 3 it was demonstrated that for
configurations with no discontinuities in the area distribution or the
first derivative of the area distribution of a configuration N = 25
provides adequate convergence of the series, and the method yields accu-
rate values of total zero-lift wave drag. This was found to be the case
for pairs of bodies of revolution of this report which also had no singu-
larities in the second derivative of the area distribution at the ends of
the bodies. For pairs of bodies, at least one of which had singularities
in the second derivative of the area distribution at the ends, all of the
49 terms available were required to obtain adequate convergence of the
series.?* For this reason 49 terms of the Fourier series for a 201 -point
analysis of the area distribution of a configuration were used in this
report in order to consistently obtain the most accurate results by the
method of reference 3,

In addition to the choice of N, there exists another factor which
affects the convergence of a Fourier sine series. In reference 10 it is
pointed out that in performing a Fourier series analysis of the derivative
of the area distribution of a configuration the higher harmonics of the
series will be suppressed if the smallest allowed value of the length of
the configuration is used. Suppression of the higher harmonics results
in a more rapid convergence and a mcre accurate result for a given N
of the series. In the case of multiple-component configurations this is
easily accomplished (as suggested in ref. 10) by analyzing the area dis-
tribution of each component over its individual length to obtain the
zero-1ift wave drag of each component alone and by analyzing the combined
area distribution of any two components over their total combined length
to obtain the zero-1lift interference wave drag between components. The
effectiveness of this type of individual-length analysis has been
adequately demonstrated in the EVALUATION OF THE METHOD section of this
report.

The machine-computing program for the method of reference 3 does not
yield the zero-1lift interference wave drag directly. However, in addition
to the total zero-lift wave drag, the program output sheets list the

“For bodies 1x1 and 5x5 in the arrangement of figure 3(a), the series
actually converges to the analytical value in the first two terms. How-
ever, to be consistent, data for these bodies computed by the method of
reference 3 are presented for N = 49,
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Tourier coefficients. The zero-1lift interference wave drag can be
obtained by proper application of these coefficients. For instance, the
Fourier coefficients for a two-component configuration can be written

Ag (5,0) = Ag, (B,6)+An,(B,0) (F5)

From substitution of equation (FS) in equation (F4) the zero-1ift inter-
ference wave drag between components of an equivalent body of revolution
is given by

Dei(5,0) = £ 0 ) ns, (8,008, (5,6) (v6)
n=1

Hence, by means of the Fourier coefficients of the program output sheet,
the zero-lift interference wave drag can easily be calculated by manual
computations in accordance with equation (F6).

The procedure described above was employed to calculate the
dimensionless zero-lift interference wave drag at M = 1 for pairs of
bodies of this report with & = 0 (figs. 3(a) and 3(c)). It was found
convenient to compute these values according to the relation

Dgy = (DEH)n even+(DEH)n cdd

(FT) oty n == -—=————-

The separate terms of equation (FT)
were also used to compute the inter-
ference at M = 1 for the pairs of
bodies of this report with 5 =2
(fig. 3(b)) from the relation

~ s

ADEH = <DEH)II even-(DEH)n odd gEG(E) T ¢

(F8)

The derivation of eguation (F8)§e(ﬂ _ ——
can best be understood by consider- °
ing the two bodies shown by the
solid lines in the upper part of
sketch (h). If the area distribu-
tions of bodies E and H are ana-
lyzed in a Fourier series over the S le) — -t
length -1 < ¢ < 1, the contributions
to the total area distribution of 7T
the even and odd parts of the 8 () — =
Fourier series, Se(&) and S5(€), : \\\ 7 ‘\\\\_////’}
respectively, can be constructed for - ~=7 o |
each body as shown in the sketch. Sketch (h)
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The zero-1ift interference wave drag between bodies E and H consists

of the sum of the zero-lift interference wave-drag contributions of the
even parts of the area distribution and that between the odd parts of the
area distribution (see eq. (F7)). The zero-lift interference wave drag
between the even and odd parts of the area distribution is identically
zero (see, e.g., bodies 1x5 of table II). If body H were positioned

as shown by the dashed lines (8 = 2), the contribution to the total area
distribution of body H of the even part of its area distribution would
be the same as before, but the contribution of the odd part of its area
distribution would be given by the dashed curve., This dashed curve is
exactly the negative of SHO(g) for the original position of body H.
Consequently, the zero-lift interference wave drag at M = 1 for the
configurations with & = 2 was calculated by using equation (F8) and

the data previously obtained from equation (F7) for the configurations
with & = 0 but analyzed over a length equal to the total combined length
of the bodies with & = 2. Although this procedure has been employed
herein to obtain M = 1 interference drag for only & = 2, it should be
noted that the general procedure is applicable for all & > 0.
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TABLE IT.- DIMENSIONLESS ZERO-LIFT INTERFERENCE WAVE DRAG AT
MACH NUMBER 1 FOR CONFIGURATIONS COF FIGURE 3

(B

1 2 3 L 5 6 7 8 9
-
oor < P << < <> < S— <—
= | — — — | —— - —— | —<

Bodies =

5 =0 g=02 5 =0 §=0 §=2 =0 ¥ =0 £ =02

Analytical Method of reference 3 Present metho

1%x1* 7.064 1.068 7.065 6.909 1.053 7.1 7.1 0.98
12 5.892 5.885 .538 5.9 5.9 .0l
13 5.152 5.153 .359 5.2 5.2 .35
1%k 4.636 4,636 . 280 4.6 4.6 .28
1*x5% 0 -.208 .650 .59
1%x6 0 o] 245 .22
1*x7 0 .00k .120 .12
1*x8 0 0 LOTh LOTh
2x2 7.368 .316 7.368 7.367 .318 7.367 7.358 .316
2x3 7.733 7.728 .23 7.730 7.728 .23k4
2xb T.Thh 7.742 .191 7.781 7.736 .191
ox5* 0 007 .286 .26
2x6 o} Nololt .119 .119
2x7 0 0 .068 L069
2x8 0 0 .0L5 L0455
I3 9,014 .178 9.01k 9.015 .178 9,012 9.003 L178
3k 9.658 9.658 148 9.650 9.650 L148
3Ix5¥ 0 .C01 .166 .16
b o} o} .081 .081
T 0 0 Nolfte! .0L8
3x8 C 0 .033 .033
Ly 10.86 .123 10.86 10.85 .12 10.85 10.8k .12k
Lx5* o} 0 .123 .12
by 0 0 .062 062
47 0 o} .038 .038
L8 0 0 .026 .026
5*x5% L.710 -. k87 4.733 4,549 -.452 L7 4.7 -.h2
5*x6 2,946 2.942 -.158 2.9 2.9 -1k
5*x7 2,061 2.063 -.070 2.1 2.0 -.067
5%x8 1.5L45 1.546 -.039 1.5 1.5 -.0k1
) 2,947 -.055 2,947 2,945 -.05% 2.946 2.941 -.055
HXT 2.578 2,578 -.029 2,578 2.973 -.030
68 2,213 2,213 -.018 2,212 2.209 -.018
<7 2.576 -.017 2.576 2.576 -.017 2.575 2.570 -.017
=8 2,41k c.h1h -.011 2,41k 2,411 -.011
8x8 2.413 -,007 2.413 2.412 -.007 2.412 2.406 -.007

*¥Denctes body

with singularities in §"(&) at the ends.
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